Suppr超能文献

对日本慢生根瘤菌中由FixLJ-FixK2-FixK1级联调控的调节子的综合评估。

Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum.

作者信息

Mesa Socorro, Hauser Felix, Friberg Markus, Malaguti Emmanuelle, Fischer Hans-Martin, Hennecke Hauke

机构信息

Institute of Microbiology, ETH, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.

出版信息

J Bacteriol. 2008 Oct;190(20):6568-79. doi: 10.1128/JB.00748-08. Epub 2008 Aug 8.

Abstract

Symbiotic N(2) fixation in Bradyrhizobium japonicum is controlled by a complex transcription factor network. Part of it is a hierarchically arranged cascade in which the two-component regulatory system FixLJ, in response to a moderate decrease in oxygen concentration, activates the fixK(2) gene. The FixK(2) protein then activates not only a number of genes essential for microoxic respiration in symbiosis (fixNOQP and fixGHIS) but also further regulatory genes (rpoN(1), nnrR, and fixK(1)). The results of transcriptome analyses described here have led to a comprehensive and expanded definition of the FixJ, FixK(2), and FixK(1) regulons, which, respectively, consist of 26, 204, and 29 genes specifically regulated in microoxically grown cells. Most of these genes are subject to positive control. Particular attention was addressed to the FixK(2)-dependent genes, which included a bioinformatics search for putative FixK(2) binding sites on DNA (FixK(2) boxes). Using an in vitro transcription assay with RNA polymerase holoenzyme and purified FixK(2) as the activator, we validated as direct targets eight new genes. Interestingly, the adjacent but divergently oriented fixK(1) and cycS genes shared the same FixK(2) box for the activation of transcription in both directions. This recognition site may also be a direct target for the FixK(1) protein, because activation of the cycS promoter required an intact fixK(1) gene and either microoxic or anoxic, denitrifying conditions. We present evidence that cycS codes for a c-type cytochrome which is important, but not essential, for nitrate respiration. Two other, unexpected results emerged from this study: (i) specifically FixK(1) seemed to exert a negative control on genes that are normally activated by the N(2) fixation-specific transcription factor NifA, and (ii) a larger number of genes are expressed in a FixK(2)-dependent manner in endosymbiotic bacteroids than in culture-grown cells, pointing to a possible symbiosis-specific control.

摘要

日本慢生根瘤菌中的共生固氮作用受一个复杂的转录因子网络控制。其中一部分是分层排列的级联反应,在这个反应中,双组分调节系统FixLJ会响应氧气浓度的适度降低,激活fixK(2)基因。然后,FixK(2)蛋白不仅会激活共生中微氧呼吸所需的一些基因(fixNOQP和fixGHIS),还会激活其他调控基因(rpoN(1)、nnrR和fixK(1))。本文所述的转录组分析结果对FixJ、FixK(2)和FixK(1)调控子进行了全面且扩展的定义,它们分别由在微氧生长细胞中受到特异性调控的26、204和29个基因组成。这些基因中的大多数受到正调控。特别关注了FixK(2)依赖性基因,其中包括对DNA上假定的FixK(2)结合位点(FixK(2)框)进行生物信息学搜索。通过使用RNA聚合酶全酶和纯化的FixK(2)作为激活剂的体外转录分析,我们验证了8个新基因作为直接靶点。有趣的是,相邻但方向相反的fixK(1)和cycS基因共享同一个FixK(2)框,用于双向激活转录。这个识别位点也可能是FixK(1)蛋白的直接靶点,因为cycS启动子的激活需要完整的fixK(1)基因以及微氧或无氧、反硝化条件。我们提供的证据表明,cycS编码一种c型细胞色素,它对硝酸盐呼吸很重要,但不是必需的。这项研究还出现了另外两个意外结果:(i)具体而言,FixK(1)似乎对通常由固氮特异性转录因子NifA激活的基因发挥负调控作用;(ii)与培养生长的细胞相比,更多的基因在内共生类菌体中以FixK(2)依赖性方式表达,这表明可能存在共生特异性调控。

相似文献

1
Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum.
J Bacteriol. 2008 Oct;190(20):6568-79. doi: 10.1128/JB.00748-08. Epub 2008 Aug 8.
3
Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade.
J Bacteriol. 2003 Jul;185(13):3978-82. doi: 10.1128/JB.185.13.3978-3982.2003.
5
Autoregulation of fixK(2) gene expression in Bradyrhizobium japonicum.
Mol Genet Genomics. 2010 Jul;284(1):25-32. doi: 10.1007/s00438-010-0547-2. Epub 2010 Jun 4.
6
Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2.
J Bacteriol. 2005 May;187(10):3329-38. doi: 10.1128/JB.187.10.3329-3338.2005.
7
Genetic regulation of nitrogen fixation in rhizobia.
Microbiol Rev. 1994 Sep;58(3):352-86. doi: 10.1128/mr.58.3.352-386.1994.
9
Posttranslational control of transcription factor FixK2, a key regulator for the Bradyrhizobium japonicum-soybean symbiosis.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21860-5. doi: 10.1073/pnas.0908097106. Epub 2009 Dec 2.
10

引用本文的文献

1
Self-growth suppression in is caused by a diffusible antagonist.
ISME Commun. 2025 Feb 17;5(1):ycaf032. doi: 10.1093/ismeco/ycaf032. eCollection 2025 Jan.
2
Self-growth suppression in is caused by a diffusible antagonist.
bioRxiv. 2024 Jun 2:2024.06.01.596975. doi: 10.1101/2024.06.01.596975.
3
Pleiotropic Effects of PhaR Regulator in Microaerobic Metabolism.
Int J Mol Sci. 2024 Feb 10;25(4):2157. doi: 10.3390/ijms25042157.
5
Soybean-mediated suppression of BjaI/BjaR quorum sensing in impacts symbiotic nitrogen fixation.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0137423. doi: 10.1128/aem.01374-23. Epub 2024 Jan 22.
6
Independent Component Analysis Reveals the Transcriptional Regulatory Modules in USDA110.
Int J Mol Sci. 2023 Aug 8;24(16):12544. doi: 10.3390/ijms241612544.
8
Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes.
Nat Plants. 2023 Jul;9(7):1067-1080. doi: 10.1038/s41477-023-01441-w. Epub 2023 Jun 15.
9
USDA 110 displays plasticity in the attachment phenotype when grown in different soybean root exudate compounds.
Front Microbiol. 2023 May 18;14:1190396. doi: 10.3389/fmicb.2023.1190396. eCollection 2023.
10
Nitric Oxide, Nitric Oxide Formers and Their Physiological Impacts in Bacteria.
Int J Mol Sci. 2022 Sep 15;23(18):10778. doi: 10.3390/ijms231810778.

本文引用的文献

1
Insertion and deletion mutations within the nif region of Rhizobium japonicum.
Plant Mol Biol. 1984 May;3(3):159-68. doi: 10.1007/BF00016063.
2
Role of Bradyrhizobium japonicum cytochrome c550 in nitrite and nitrate respiration.
FEMS Microbiol Lett. 2008 Feb;279(2):188-94. doi: 10.1111/j.1574-6968.2007.01034.x. Epub 2008 Jan 2.
3
Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
Mol Plant Microbe Interact. 2007 Nov;20(11):1353-63. doi: 10.1094/MPMI-20-11-1353.
4
New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR.
J Bacteriol. 2007 Dec;189(24):8928-43. doi: 10.1128/JB.01088-07. Epub 2007 Oct 19.
5
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Mol Plant Microbe Interact. 2007 Oct;20(10):1298-307. doi: 10.1094/MPMI-20-10-1298.
7
Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.
Science. 2007 Jun 1;316(5829):1307-12. doi: 10.1126/science.1139548.
8
Prediction of transcription factor binding sites using ChIP-chip and phylogenetic footprinting data.
J Bioinform Comput Biol. 2007 Feb;5(1):105-16. doi: 10.1142/s0219720007002540.
10
The role of PHB metabolism in the symbiosis of rhizobia with legumes.
Appl Microbiol Biotechnol. 2006 Jul;71(4):377-86. doi: 10.1007/s00253-006-0354-1. Epub 2006 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验