Jain Kavita
Theoretical Sciences Unit and Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
Genetics. 2008 Aug;179(4):2125-34. doi: 10.1534/genetics.108.089136. Epub 2008 Aug 9.
We consider the dynamics of a nonrecombining haploid population of finite size that accumulates deleterious mutations irreversibly. This ratchet-like process occurs at a finite speed in the absence of epistasis, but it has been suggested that synergistic epistasis can halt the ratchet. Using a diffusion theory, we find explicit analytical expressions for the typical time between successive clicks of the ratchet for both nonepistatic and epistatic fitness functions. Our calculations show that the interclick time is of a scaling form that in the absence of epistasis gives a speed that is determined by size of the least-loaded class and the selection coefficient. With synergistic interactions, the ratchet speed is found to approach zero rapidly for arbitrary epistasis. Our analytical results are in good agreement with the numerical simulations.
我们考虑一个有限大小的非重组单倍体群体的动态变化,该群体不可逆地积累有害突变。在没有上位性的情况下,这种类似棘轮的过程以有限速度发生,但有人提出协同上位性可以使棘轮停止。利用扩散理论,我们找到了非上位性和上位性适应度函数下棘轮连续两次“咔嗒”之间典型时间的显式解析表达式。我们的计算表明,两次“咔嗒”之间的时间具有标度形式,在没有上位性的情况下,其速度由负载最小类别的大小和选择系数决定。对于协同相互作用,发现对于任意上位性,棘轮速度都迅速趋近于零。我们的解析结果与数值模拟结果吻合良好。