Martin Guillaume, Roques Lionel
Institut des Sciences de l'Evolution-Montpellier, (UMR 5554) Centre National de la Recherche Scientifique, 34095 Montpellier, France
BioSP, INRA, 84914, Avignon, France.
Genetics. 2016 Dec;204(4):1541-1558. doi: 10.1534/genetics.116.187385. Epub 2016 Oct 21.
Various models describe asexual evolution by mutation, selection, and drift. Some focus directly on fitness, typically modeling drift but ignoring or simplifying both epistasis and the distribution of mutation effects (traveling wave models). Others follow the dynamics of quantitative traits determining fitness (Fisher's geometric model), imposing a complex but fixed form of mutation effects and epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation rate limits and for long-term stationary regimes, thus losing information on transient behaviors and the effect of initial conditions. Here, we connect fitness-based and trait-based models into a single framework, and seek explicit solutions even away from stationarity. The expected fitness distribution is followed over time via its cumulant generating function, using a deterministic approximation that neglects drift. In several cases, explicit trajectories for the full fitness distribution are obtained for arbitrary mutation rates and standing variance. For nonepistatic mutations, especially with beneficial mutations, this approximation fails over the long term but captures the early dynamics, thus complementing stationary stochastic predictions. The approximation also handles several diminishing returns epistasis models (e.g., with an optimal genotype); it can be applied at and away from equilibrium. General results arise at equilibrium, where fitness distributions display a "phase transition" with mutation rate. Beyond this phase transition, in Fisher's geometric model, the full trajectory of fitness and trait distributions takes a simple form; robust to the details of the mutant phenotype distribution. Analytical arguments are explored regarding why and when the deterministic approximation applies.
各种模型描述了通过突变、选择和漂变进行的无性进化。一些模型直接关注适应性,通常对漂变进行建模,但忽略或简化上位性和突变效应的分布(行波模型)。另一些模型则跟踪决定适应性的数量性状的动态(费希尔几何模型),施加复杂但固定形式的突变效应和上位性,并且常常忽略漂变。在所有情况下,预测通常是在高或低突变率极限以及长期稳定状态下获得的,从而丢失了关于瞬态行为和初始条件影响的信息。在这里,我们将基于适应性的模型和基于性状的模型连接到一个单一框架中,并寻求即使远离稳定状态的显式解。通过其累积量生成函数随时间跟踪预期的适应性分布,使用忽略漂变的确定性近似。在几种情况下,对于任意突变率和固定方差,都获得了完整适应性分布的显式轨迹。对于非上位性突变,特别是有益突变,这种近似在长期内会失效,但能捕捉早期动态,从而补充了稳定状态下的随机预测。该近似还处理了几种收益递减的上位性模型(例如,具有最优基因型的模型);它可以在平衡状态及远离平衡状态时应用。在平衡状态下会出现一般结果,其中适应性分布随突变率显示出“相变”。在这个相变之后,在费希尔几何模型中,适应性和性状分布的完整轨迹具有简单形式;对突变表型分布的细节具有鲁棒性。探讨了关于确定性近似为何适用以及何时适用的分析论证。