Suppr超能文献

缺陷型断裂诱导复制导致酿酒酵母中的半交换。

Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae.

作者信息

Deem Angela, Barker Krista, Vanhulle Kelly, Downing Brandon, Vayl Alexandra, Malkova Anna

机构信息

Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA.

出版信息

Genetics. 2008 Aug;179(4):1845-60. doi: 10.1534/genetics.108.087940. Epub 2008 Aug 9.

Abstract

Break-induced replication (BIR) is an important process of DNA metabolism that has been implicated in the restart of collapsed replication forks, as well as in various chromosomal instabilities, including loss of heterozygosity, translocations, and alternative telomere lengthening. Therefore, knowledge of how BIR is carried out and regulated is important for better understanding the maintenance of genomic stability in eukaryotes. Here we present a new yeast experimental system that enables the genetic control of BIR to be investigated. Analysis of mutations selected on the basis of their sensitivity to various DNA-damaging agents demonstrated that deletion of POL32, which encodes a third, nonessential subunit of polymerase delta, significantly reduced the efficiency of BIR, although some POL32-independent BIR was still observed. Importantly, the BIR defect in pol32Delta cells was associated with the formation of half-crossovers. We propose that these half-crossovers resulted from aberrant processing of BIR intermediates. Furthermore, we suggest that the half-crossovers observed in our system are analogous to nonreciprocal translocations (NRTs) described in mammalian tumor cells and, thus, our system could represent an opportunity to further study the NRT mechanism in yeast.

摘要

断裂诱导复制(BIR)是DNA代谢的一个重要过程,它与崩溃的复制叉的重新启动以及各种染色体不稳定性有关,包括杂合性缺失、易位和替代性端粒延长。因此,了解BIR的执行和调控方式对于更好地理解真核生物基因组稳定性的维持至关重要。在此,我们提出了一种新的酵母实验系统,该系统能够对BIR进行遗传控制研究。对基于对各种DNA损伤剂敏感性而选择的突变进行分析表明,编码DNA聚合酶δ的第三个非必需亚基的POL32缺失显著降低了BIR的效率,尽管仍观察到一些不依赖POL32的BIR。重要的是,pol32Δ细胞中的BIR缺陷与半交叉的形成有关。我们认为这些半交叉是由BIR中间体的异常加工导致的。此外,我们认为在我们的系统中观察到的半交叉类似于在哺乳动物肿瘤细胞中描述的非相互易位(NRT),因此,我们的系统可能为进一步研究酵母中的NRT机制提供一个契机。

相似文献

1
Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae.
Genetics. 2008 Aug;179(4):1845-60. doi: 10.1534/genetics.108.087940. Epub 2008 Aug 9.
2
Break-induced replication and telomerase-independent telomere maintenance require Pol32.
Nature. 2007 Aug 16;448(7155):820-3. doi: 10.1038/nature06047. Epub 2007 Aug 1.
3
Break-induced replication: unraveling each step.
Trends Genet. 2022 Jul;38(7):752-765. doi: 10.1016/j.tig.2022.03.011. Epub 2022 Apr 19.
4
Migrating bubble during break-induced replication drives conservative DNA synthesis.
Nature. 2013 Oct 17;502(7471):389-92. doi: 10.1038/nature12584. Epub 2013 Sep 11.
6
Cascades of genetic instability resulting from compromised break-induced replication.
PLoS Genet. 2014 Feb 27;10(2):e1004119. doi: 10.1371/journal.pgen.1004119. eCollection 2014 Feb.
7
Investigation of Break-Induced Replication in Yeast.
Methods Mol Biol. 2021;2153:307-328. doi: 10.1007/978-1-0716-0644-5_22.
8
Tracking break-induced replication shows that it stalls at roadblocks.
Nature. 2021 Feb;590(7847):655-659. doi: 10.1038/s41586-020-03172-w. Epub 2021 Jan 20.
9
Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway.
PLoS One. 2013 Apr 17;8(4):e60926. doi: 10.1371/journal.pone.0060926. Print 2013.

引用本文的文献

1
Mechanisms and genomic implications of break-induced replication.
Nat Struct Mol Biol. 2025 Aug 22. doi: 10.1038/s41594-025-01644-z.
3
Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors.
Nucleic Acids Res. 2024 Jul 8;52(12):7012-7030. doi: 10.1093/nar/gkae453.
4
Transcription as source of genetic heterogeneity in budding yeast.
Yeast. 2024 Apr;41(4):171-185. doi: 10.1002/yea.3926. Epub 2024 Jan 9.
5
Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability.
Genes Dev. 2023 Jul 1;37(13-14):621-639. doi: 10.1101/gad.350618.123. Epub 2023 Aug 4.
6
Identification of the nuclear localization signal in the Saccharomyces cerevisiae Pif1 DNA helicase.
PLoS Genet. 2023 Jul 24;19(7):e1010853. doi: 10.1371/journal.pgen.1010853. eCollection 2023 Jul.
7
Proper RPA acetylation promotes accurate DNA replication and repair.
Nucleic Acids Res. 2023 Jun 23;51(11):5565-5583. doi: 10.1093/nar/gkad291.
8
Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability.
bioRxiv. 2023 Mar 16:2023.03.15.532751. doi: 10.1101/2023.03.15.532751.
9
Comprehensive analysis of cis- and trans-acting factors affecting ectopic Break-Induced Replication.
PLoS Genet. 2022 Jun 21;18(6):e1010124. doi: 10.1371/journal.pgen.1010124. eCollection 2022 Jun.
10
Break-induced replication: unraveling each step.
Trends Genet. 2022 Jul;38(7):752-765. doi: 10.1016/j.tig.2022.03.011. Epub 2022 Apr 19.

本文引用的文献

1
Rad52 promotes postinvasion steps of meiotic double-strand-break repair.
Mol Cell. 2008 Feb 29;29(4):517-24. doi: 10.1016/j.molcel.2007.12.014.
2
Regulation of rtt107 recruitment to stalled DNA replication forks by the cullin rtt101 and the rtt109 acetyltransferase.
Mol Biol Cell. 2008 Jan;19(1):171-80. doi: 10.1091/mbc.e07-09-0961. Epub 2007 Oct 31.
3
Break-induced replication and telomerase-independent telomere maintenance require Pol32.
Nature. 2007 Aug 16;448(7155):820-3. doi: 10.1038/nature06047. Epub 2007 Aug 1.
5
Template switching during break-induced replication.
Nature. 2007 May 3;447(7140):102-5. doi: 10.1038/nature05723. Epub 2007 Apr 4.
6
Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.
Mol Cell Biol. 2007 Apr;27(7):2601-14. doi: 10.1128/MCB.01740-06. Epub 2007 Jan 22.
9
Break-induced replication and recombinational telomere elongation in yeast.
Annu Rev Biochem. 2006;75:111-35. doi: 10.1146/annurev.biochem.74.082803.133234.
10
The cullin Rtt101p promotes replication fork progression through damaged DNA and natural pause sites.
Curr Biol. 2006 Apr 18;16(8):786-92. doi: 10.1016/j.cub.2006.02.071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验