Bröcker Markus J, Wätzlich Denise, Uliczka Frank, Virus Simone, Saggu Miguel, Lendzian Friedhelm, Scheer Hugo, Rüdiger Wolfhart, Moser Jürgen, Jahn Dieter
Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.
J Biol Chem. 2008 Oct 31;283(44):29873-81. doi: 10.1074/jbc.M805206200. Epub 2008 Aug 8.
Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.
叶绿素和细菌叶绿素的生物合成需要原叶绿素酸酯a的环D通过原叶绿素酸酯氧化还原酶进行双电子还原以形成叶绿素酸酯a。已知一种光依赖性(光依赖性原叶绿素酸酯氧化还原酶(LPOR))和一种不相关的暗操作酶(暗操作原叶绿素酸酯氧化还原酶(DPOR))。DPOR在裸子植物、苔藓、蕨类植物、藻类和光合细菌在无光条件下的叶绿素生物合成中起重要作用。尽管DPOR与固氮酶具有显著的氨基酸序列同源性,但只有最初的催化步骤类似于固氮酶催化。底物配位和随后的[Fe-S]簇依赖性催化被认为是不相关的。在这里,我们表征了第一种蓝细菌DPOR,它由同二聚体蛋白复合物ChlL(2)和异源四聚体蛋白复合物(ChlNB)(2)组成。ChlL(2)二聚体包含一个EPR活性的[4Fe-4S]簇,而(ChlNB)(2)复合物表现出两个[4Fe-4S]簇的EPR信号,其g值和温度依赖性弛豫行为存在差异。这些发现表明在(ChlNB)(2)中发现的单个[4Fe-4S]簇的几何结构存在差异。为了分析DPOR底物识别,测试了11种在四个吡咯环和异环上具有改变取代基的合成衍生物以及8种叶绿素生物合成中间体作为DPOR底物。尽管DPOR容忍A-C环上的环取代基有轻微修饰,但催化靶环D显然被发现具有高特异性配位。此外,原叶绿素酸酯a、相应的[8-乙烯基]衍生物和原叶绿素酸酯b同样被用作底物。观察到与LPOR底物结合的明显差异。推断了蓝细菌叶绿素生物合成中关于C8-乙烯基还原和叶绿素a/b型C7甲基/甲酰基相互转化的替代生物合成途径。