Institut für Mikrobiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2094-8. doi: 10.1073/pnas.1218303110. Epub 2013 Jan 22.
Photosynthesis uses chlorophylls for the conversion of light into chemical energy, the driving force of life on Earth. During chlorophyll biosynthesis in photosynthetic bacteria, cyanobacteria, green algae and gymnosperms, dark-operative protochlorophyllide oxidoreductase (DPOR), a nitrogenase-like metalloenzyme, catalyzes the chemically challenging two-electron reduction of the fully conjugated ring system of protochlorophyllide a. The reduction of the C-17=C-18 double bond results in the characteristic ring architecture of all chlorophylls, thereby altering the absorption properties of the molecule and providing the basis for light-capturing and energy-transduction processes of photosynthesis. We report the X-ray crystallographic structure of the substrate-bound, ADP-aluminium fluoride-stabilized (ADP·AlF(3)-stabilized) transition state complex between the DPOR components L(2) and (NB)(2) from the marine cyanobacterium Prochlorococcus marinus. Our analysis permits a thorough investigation of the dynamic interplay between L(2) and (NB)(2). Upon complex formation, substantial ATP-dependent conformational rearrangements of L(2) trigger the protein-protein interactions with (NB)(2) as well as the electron transduction via redox-active [4Fe-4S] clusters. We also present the identification of artificial "small-molecule substrates" of DPOR in correlation with those of nitrogenase. The catalytic differences and similarities between DPOR and nitrogenase have broad implications for the energy transduction mechanism of related multiprotein complexes that are involved in the reduction of chemically stable double and/or triple bonds.
光合作用利用叶绿素将光能转化为化学能,这是地球上生命的驱动力。在光合细菌、蓝藻、绿藻和裸子植物的叶绿素生物合成过程中,暗反应原叶绿素氧化还原酶(DPOR)作为一种氮酶样金属酶,催化原叶绿素 a 完全共轭环系统的两电子化学挑战性还原。C-17=C-18 双键的还原导致所有叶绿素的特征环结构,从而改变分子的吸收特性,并为光合作用的光捕获和能量传递过程提供基础。我们报道了来自海洋蓝藻聚球藻的 DPOR 组件 L(2)和(NB)(2)之间的与底物结合、ADP-氟铝酸盐稳定的(ADP·AlF(3)-稳定的)过渡态复合物的 X 射线晶体结构。我们的分析允许对 L(2)和(NB)(2)之间的动态相互作用进行彻底研究。在复合物形成时,L(2)的大量 ATP 依赖性构象重排触发与(NB)(2)的蛋白-蛋白相互作用以及通过氧化还原活性[4Fe-4S]簇的电子传递。我们还提出了 DPOR 的人工“小分子底物”的鉴定与氮酶的鉴定相关。DPOR 和氮酶之间的催化差异和相似性对涉及化学稳定双键和/或三键还原的相关多蛋白复合物的能量传递机制具有广泛的影响。