Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.
J Biol Chem. 2010 Mar 12;285(11):8268-77. doi: 10.1074/jbc.M109.087874. Epub 2010 Jan 14.
Dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the light-independent two-electron reduction of protochlorophyllide a to form chlorophyllide a, the last common precursor of chlorophyll a and bacteriochlorophyll a biosynthesis. During ATP-dependent DPOR catalysis the homodimeric ChlL(2) subunit carrying a [4Fe-4S] cluster transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2), which also possesses a redox active [4Fe-4S] cluster. To investigate the transient interaction of both subcomplexes and the resulting electron transfer reactions, the ternary DPOR enzyme holocomplex comprising subunits ChlN, ChlB, and ChlL from the cyanobacterium Prochlorococcus marinus was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with the nonhydrolyzable ATP analogs adenosine 5'-(gamma-thio)triphosphate, adenosine 5'-(beta,gamma-imido)triphosphate, or MgADP in combination with AlF(4)(-). Additionally, a mutant ChlL(2) protein, with a deleted Leu(153) in the switch II region also allowed for the formation of a stable octameric complex. Furthermore, efficient complex formation required the presence of protochlorophyllide. Electron paramagnetic resonance spectroscopy of ternary DPOR complexes revealed a reduced [4Fe-4S] cluster located on ChlL(2), indicating that complete ATP hydrolysis is a prerequisite for intersubunit electron transfer. Circular dichroism spectroscopic experiments indicated nucleotide-dependent conformational changes for ChlL(2) after ATP binding. A nucleotide-dependent switch mechanism triggering ternary complex formation and electron transfer was concluded. From these results a detailed redox cycle for DPOR catalysis was deduced.
暗操作原叶绿素氧化还原酶 (DPOR) 催化原叶绿素 a 的非光依赖的两电子还原,形成叶绿素 a,这是叶绿素 a 和细菌叶绿素 a 生物合成的最后一个共同前体。在 ATP 依赖的 DPOR 催化过程中,携带 [4Fe-4S] 簇的同源二聚体 ChlL(2)亚基将电子转移到相应的异四聚体催化亚基 (ChlN/ChlB)(2),该亚基也具有氧化还原活性的 [4Fe-4S] 簇。为了研究两个亚基之间的瞬时相互作用和由此产生的电子转移反应,从蓝藻聚球藻中捕获包含亚基 ChlN、ChlB 和 ChlL 的三元 DPOR 酶全酶复合物作为八聚体 (ChlN/ChlB)(2)(ChlL(2))(2) 复合物,在与非水解的 ATP 类似物腺苷 5'-(γ-硫)三磷酸、腺苷 5'-(β,γ-亚氨基)三磷酸或 MgADP 结合并与 AlF(4)(-) 一起孵育后。此外,一个突变的 ChlL(2)蛋白,在开关 II 区域缺失 Leu(153),也允许形成稳定的八聚体复合物。此外,有效的复合物形成需要原叶绿素的存在。三元 DPOR 复合物的电子顺磁共振波谱显示 ChlL(2)上存在还原的 [4Fe-4S] 簇,表明完全的 ATP 水解是亚基间电子转移的前提。圆二色性光谱实验表明,在 ATP 结合后,ChlL(2)发生核苷酸依赖的构象变化。得出了一种核苷酸依赖的开关机制,触发三元复合物的形成和电子转移。从这些结果中推断出 DPOR 催化的详细氧化还原循环。