Suppr超能文献

评估作为电子处方临床决策支持的临床术语的SNOMED的VA/KP问题列表子集。

Evaluation of the VA/KP problem list subset of SNOMED as a clinical terminology for electronic prescription clinical decision support.

作者信息

Mantena Surendranath, Schadow Gunther

机构信息

Regenstrief Institute, Indianapolis, IN, USA.

出版信息

AMIA Annu Symp Proc. 2007 Oct 11;2007:498-502.

Abstract

A standardized terminology for medical indications is essential for building e-prescription applications with decision support. The FDA has adopted the Veteran Administration and Kaiser Permanente (VA/KP) Problem List Subset of SNOMED as the terminology to represent indications in electronic labels. In this paper, we evaluate the ability of this subset to represent the text phrases extracted from a medication decision support system and the indications section of existing drug labels. We compiled a test set of 1265 distinct indication phrases and mapped them to (1) UMLS, (2) Entire SNOMED, (3) All Precoordinated concepts from the "Clinical Finding" hierarchy of SNOMED, and (4) VA/KP Subset. 95% of the phrases mapped to concepts in UMLS, 90.3% to SNOMED, 79.5% to SNOMED Precordinated and 71.1% mapped completely or partially to concepts in the VA/KP subset. Our study suggests that the VA/KP Subset has significant limitations for coding drug indications; however, when focusing on indications as medical conditions only, the coverage seems more adequate.

摘要

用于医学适应症的标准化术语对于构建具有决策支持功能的电子处方应用程序至关重要。美国食品药品监督管理局(FDA)已采用SNOMED的退伍军人管理局和凯撒医疗集团(VA/KP)问题列表子集作为在电子标签中表示适应症的术语。在本文中,我们评估了该子集表示从药物决策支持系统和现有药品标签的适应症部分提取的文本短语 的能力。我们编制了一个包含1265个不同适应症短语的测试集,并将它们映射到:(1)统一医学语言系统(UMLS),(2)完整的SNOMED,(3)来自SNOMED“临床发现”层次结构的所有预协调概念,以及(4)VA/KP子集。95%的短语映射到UMLS中的概念,90.3%映射到SNOMED,79.5%映射到SNOMED预协调概念,71.1%完全或部分映射到VA/KP子集中的概念。我们的研究表明,VA/KP子集在编码药物适应症方面存在重大局限性;然而,当仅将适应症视为医疗状况时,覆盖范围似乎更充足。

相似文献

2
Evaluation of SNOMED coverage of Veterans Health Administration terms.
Stud Health Technol Inform. 2004;107(Pt 1):540-4.
6
Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
J Biomed Inform. 2014 Apr;48:54-65. doi: 10.1016/j.jbi.2013.11.008. Epub 2013 Dec 4.

引用本文的文献

2
Identifying inconsistencies in SNOMED CT problem lists using structural indicators.
AMIA Annu Symp Proc. 2013 Nov 16;2013:17-26. eCollection 2013.
3
Handling age specification in the SNOMED CT to ICD-10-CM cross-map.
AMIA Annu Symp Proc. 2012;2012:1014-22. Epub 2012 Nov 3.
4
Comparison of Knowledge Levels Required for SNOMED CT Coding of Diagnosis and Operation Names in Clinical Records.
Healthc Inform Res. 2012 Sep;18(3):186-90. doi: 10.4258/hir.2012.18.3.186. Epub 2012 Sep 30.
6
A survey of SNOMED CT direct users, 2010: impressions and preferences regarding content and quality.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i36-44. doi: 10.1136/amiajnl-2011-000341. Epub 2011 Aug 11.
7
A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record.
J Am Med Inform Assoc. 2011 Nov-Dec;18(6):859-67. doi: 10.1136/amiajnl-2011-000121. Epub 2011 May 25.
8
Corpus-Based Problem Selection for EHR Note Summarization.
AMIA Annu Symp Proc. 2010 Nov 13;2010:817-21.

本文引用的文献

1
Medication-related clinical decision support in computerized provider order entry systems: a review.
J Am Med Inform Assoc. 2007 Jan-Feb;14(1):29-40. doi: 10.1197/jamia.M2170. Epub 2006 Oct 26.
2
Interface terminologies: facilitating direct entry of clinical data into electronic health record systems.
J Am Med Inform Assoc. 2006 May-Jun;13(3):277-88. doi: 10.1197/jamia.M1957. Epub 2006 Feb 24.
5
The epidemiology of prescribing errors: the potential impact of computerized prescriber order entry.
Arch Intern Med. 2004 Apr 12;164(7):785-92. doi: 10.1001/archinte.164.7.785.
7
Adverse drug events in ambulatory care.
N Engl J Med. 2003 Apr 17;348(16):1556-64. doi: 10.1056/NEJMsa020703.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验