Suppr超能文献

一种从电子病历的结构化数据中自动推断患者问题的方法和知识库。

A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record.

机构信息

Department of General Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

出版信息

J Am Med Inform Assoc. 2011 Nov-Dec;18(6):859-67. doi: 10.1136/amiajnl-2011-000121. Epub 2011 May 25.

Abstract

BACKGROUND

Accurate knowledge of a patient's medical problems is critical for clinical decision making, quality measurement, research, billing and clinical decision support. Common structured sources of problem information include the patient problem list and billing data; however, these sources are often inaccurate or incomplete.

OBJECTIVE

To develop and validate methods of automatically inferring patient problems from clinical and billing data, and to provide a knowledge base for inferring problems.

STUDY DESIGN AND METHODS

We identified 17 target conditions and designed and validated a set of rules for identifying patient problems based on medications, laboratory results, billing codes, and vital signs. A panel of physicians provided input on a preliminary set of rules. Based on this input, we tested candidate rules on a sample of 100,000 patient records to assess their performance compared to gold standard manual chart review. The physician panel selected a final rule for each condition, which was validated on an independent sample of 100,000 records to assess its accuracy.

RESULTS

Seventeen rules were developed for inferring patient problems. Analysis using a validation set of 100,000 randomly selected patients showed high sensitivity (range: 62.8-100.0%) and positive predictive value (range: 79.8-99.6%) for most rules. Overall, the inference rules performed better than using either the problem list or billing data alone.

CONCLUSION

We developed and validated a set of rules for inferring patient problems. These rules have a variety of applications, including clinical decision support, care improvement, augmentation of the problem list, and identification of patients for research cohorts.

摘要

背景

准确了解患者的医疗问题对于临床决策、质量衡量、研究、计费和临床决策支持至关重要。常见的结构化问题信息来源包括患者问题列表和计费数据;然而,这些来源往往不准确或不完整。

目的

开发和验证从临床和计费数据中自动推断患者问题的方法,并为推断问题提供知识库。

研究设计和方法

我们确定了 17 种目标病症,并设计和验证了一组基于药物、实验室结果、计费代码和生命体征识别患者问题的规则。一组医生为初步规则提供了意见。根据这些意见,我们在 10 万份患者记录的样本上测试了候选规则,以评估它们与金标准手动图表审查相比的性能。医生小组为每种情况选择了最终规则,并在 10 万份独立记录的样本上进行验证,以评估其准确性。

结果

为推断患者问题开发了 17 条规则。使用 10 万份随机选择患者的验证集进行分析表明,大多数规则的灵敏度(范围:62.8-100.0%)和阳性预测值(范围:79.8-99.6%)都很高。总体而言,推断规则的性能优于单独使用问题列表或计费数据。

结论

我们开发并验证了一组推断患者问题的规则。这些规则具有多种应用,包括临床决策支持、护理改进、问题列表的扩充以及研究队列中患者的识别。

相似文献

引用本文的文献

本文引用的文献

4
Migrating existing clinical content from ICD-9 to SNOMED.将现有临床内容从 ICD-9 迁移到 SNOMED。
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):602-7. doi: 10.1136/jamia.2009.001057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验