Lee Aih Cheun, Suter Daniel M
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
Dev Neurobiol. 2008 Oct;68(12):1363-77. doi: 10.1002/dneu.20662.
During adhesion-mediated neuronal growth cone guidance microtubules undergo major rearrangements. However, it is unknown whether microtubules extend to adhesion sites because of changes in plus-end polymerization and/or translocation dynamics, because of changes in actin-microtubule interactions, or because they follow the reorganization of the actin cytoskeleton. Here, we used fluorescent speckle microscopy to directly quantify microtubule and actin dynamics in Aplysia growth cones as they turn towards beads coated with the cell adhesion molecule apCAM. During the initial phase of adhesion formation, dynamic microtubules in the peripheral domain preferentially explore apCAM-beads prior to changes in growth cone morphology and retrograde actin flow. Interestingly, these early microtubules have unchanged polymerization rates but spend less time in retrograde translocation due to uncoupling from actin flow. Furthermore, microtubules exploring the adhesion site spend less time in depolymerization. During the later phase of traction force generation, the central domain advances and more microtubules in the peripheral domain extend because of attenuation of actin flow and clearance of F-actin structures. Microtubules in the transition zone and central domain, however, translocate towards the adhesion site in concert with actin arcs and bundles, respectively. We conclude that adhesion molecules guide neuronal growth cones and underlying microtubule rearrangements largely by differentially regulating microtubule-actin coupling and actin movements according to growth cone region and not by controlling plus-end polymerization rates.
在黏附介导的神经元生长锥导向过程中,微管会发生重大重排。然而,尚不清楚微管是否因正端聚合和/或转移动力学的变化、肌动蛋白-微管相互作用的变化,或者是因为它们跟随肌动蛋白细胞骨架的重组而延伸至黏附位点。在这里,我们使用荧光斑点显微镜直接量化海兔生长锥转向包被有细胞黏附分子apCAM的珠子时微管和肌动蛋白的动力学。在黏附形成的初始阶段,周边区域的动态微管在生长锥形态和逆行肌动蛋白流发生变化之前优先探索apCAM珠子。有趣的是,这些早期微管的聚合速率没有变化,但由于与肌动蛋白流解耦,逆行转运的时间减少。此外,探索黏附位点的微管解聚时间减少。在产生牵引力的后期,中央区域前进,周边区域更多的微管因肌动蛋白流减弱和F-肌动蛋白结构清除而延伸。然而,过渡区和中央区域的微管分别与肌动蛋白弧和束协同向黏附位点转运。我们得出结论,黏附分子引导神经元生长锥和潜在的微管重排主要是通过根据生长锥区域差异调节微管-肌动蛋白偶联和肌动蛋白运动,而不是通过控制正端聚合速率。