Suppr超能文献

重新评估 spectrin 结合蛋白在轴突生长和维持过程中的肌动蛋白依赖性。

Re-evaluating the actin-dependence of spectraplakin functions during axon growth and maintenance.

机构信息

Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, UK.

Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.

出版信息

Dev Neurobiol. 2022 May;82(4):288-307. doi: 10.1002/dneu.22873. Epub 2022 Apr 22.

Abstract

Axons are the long and slender processes of neurons constituting the biological cables that wire the nervous system. The growth and maintenance of axons require loose microtubule bundles that extend through their entire length. Understanding microtubule regulation is therefore an essential aspect of axon biology. Key regulators of neuronal microtubules are the spectraplakins, a well-conserved family of cytoskeletal cross-linkers that underlie neuropathies in mouse and humans. Spectraplakin deficiency in mouse or Drosophila causes severe decay of microtubule bundles and reduced axon growth. The underlying mechanisms are best understood for Drosophila's spectraplakin Short stop (Shot) and believed to involve cytoskeletal cross-linkage: Shot's binding to microtubules and Eb1 via its C-terminus has been thoroughly investigated, whereas its F-actin interaction via N-terminal calponin homology (CH) domains is little understood. Here, we have gained new understanding by showing that the F-actin interaction must be finely balanced: altering the properties of F-actin networks or deleting/exchanging Shot's CH domains induces changes in Shot function-with a Lifeact-containing Shot variant causing remarkable remodeling of neuronal microtubules. In addition to actin-microtubule (MT) cross-linkage, we find strong indications that Shot executes redundant MT bundle-promoting roles that are F-actin-independent. We argue that these likely involve the neuronal Shot-PH isoform, which is characterized by a large, unexplored central plakin repeat region (PRR) similarly existing also in mammalian spectraplakins.

摘要

轴突是神经元的长而细的突起,构成了连接神经系统的生物电缆。轴突的生长和维持需要松散的微管束,这些微管束延伸到其整个长度。因此,理解微管的调节是轴突生物学的一个重要方面。神经元微管的关键调节剂是spectraplakins,这是一组高度保守的细胞骨架交联剂,在小鼠和人类的神经病变中起着基础作用。小鼠或果蝇中spectraplakin 的缺失会导致微管束严重衰退和轴突生长减少。果蝇的 spectraplakin Short stop(Shot)的潜在机制最为人所理解,并且被认为涉及细胞骨架交联:Shot 通过其 C 末端与微管和 Eb1 的结合已经得到了彻底的研究,而其通过 N 末端 calponin 同源(CH)结构域与 F-肌动蛋白的相互作用则知之甚少。在这里,我们通过显示 F-肌动蛋白相互作用必须精细平衡来获得新的理解:改变 F-肌动蛋白网络的性质或删除/交换 Shot 的 CH 结构域会导致 Shot 功能发生变化——具有 Lifeact 包含的 Shot 变体的神经元微管会发生显著重塑。除了肌动蛋白-微管(MT)交联之外,我们还发现了强烈的迹象表明 Shot 执行了与 F-肌动蛋白无关的冗余 MT 束促进作用。我们认为这些可能涉及神经元 Shot-PH 同工型,其特征是存在一个大的、未探索的中央 plaklin 重复区(PRR),同样存在于哺乳动物的 spectraplakins 中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5776/9320987/4285726060eb/DNEU-82-288-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验