Cheon Jinwoo, Lee Jae-Hyun
Department of Chemistry, Yonsei University, Seoul 120-749, Korea.
Acc Chem Res. 2008 Dec;41(12):1630-40. doi: 10.1021/ar800045c.
Current biomedical imaging techniques including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT) are vital in the diagnosis of various diseases. Each imaging modality has its own merits and disadvantages, and a single technique does not possess all the required capabilities for comprehensive imaging. Therefore, multimodal imaging methods are quickly becoming important tools for state-of-the-art biomedical research and clinical diagnostics and therapeutics. In this Account, we will discuss synergistically integrated nanoparticle probes, which will be an essential tool in multimodal imaging technology. When inorganic nanoparticles are introduced into biological systems, their extremely small size and their exceptional physical and chemical properties make them useful probes for biological diagnostics. Nanoparticle probes can endow imaging techniques with enhanced signal sensitivity, better spatial resolution, and the ability to relay information about biological systems at the molecular and cellular levels. Simple magnetic nanoparticles function as MRI contrast enhancement probes. These magnetic nanoparticles can then serve as a core platform for the addition of other functional moieties including fluorescence tags, radionuclides, and other biomolecules for multimodal imaging, gene delivery, and cellular trafficking. For example, MRI-optical dual-modal probes composed of a fluorescent dye-doped silica (DySiO(2)) core surrounded by magnetic nanoparticles can macroscopically detect neuroblastoma cancer cells via MRI along with subcellular information via fluorescence imaging. Magnetic nanoparticles can also be coupled to radionuclides ((124)I) to construct MRI-PET dual-modal probes. Such probes can accurately detect lymph nodes (LNs), which are critical for assessing cancer metastasis. In vivo MRI/PET images can clearly identify small (approximately 3 mm) LNs along with precise anatomical information. Systems using multicomponent nanoparticles modified with biomolecules can also monitor gene expression and other markers in cell therapeutics studies. We have used hybrid stem cell-magnetic nanoparticle probes with MRI to monitor in vivo stem cell trafficking. MRI with hybrid probes of magnetic nanoparticles and adenovirus can detect target cells and can monitor gene delivery and the expression of green fluorescent proteins optically. Each component of such multimodal probes complements the other modalities, and their synergistic materials properties ultimately provide more accurate information in in vitro and in vivo biological systems.
当前的生物医学成像技术,包括磁共振成像(MRI)、正电子发射断层扫描(PET)和计算机X射线断层扫描(CT),在各种疾病的诊断中至关重要。每种成像方式都有其自身的优缺点,单一技术并不具备全面成像所需的所有能力。因此,多模态成像方法正迅速成为最先进的生物医学研究以及临床诊断和治疗的重要工具。在本综述中,我们将讨论协同集成的纳米颗粒探针,它将成为多模态成像技术的重要工具。当无机纳米颗粒被引入生物系统时,其极小的尺寸以及特殊的物理和化学性质使其成为生物诊断的有用探针。纳米颗粒探针可以赋予成像技术更高的信号灵敏度、更好的空间分辨率,以及在分子和细胞水平上传递有关生物系统信息的能力。简单的磁性纳米颗粒可作为MRI造影增强探针。这些磁性纳米颗粒随后可作为核心平台,用于添加其他功能部分,包括荧光标签、放射性核素和其他生物分子,以实现多模态成像、基因传递和细胞运输。例如,由荧光染料掺杂的二氧化硅(DySiO₂)核心被磁性纳米颗粒包围组成的MRI-光学双模态探针,可以通过MRI宏观检测神经母细胞瘤癌细胞,并通过荧光成像获得亚细胞信息。磁性纳米颗粒还可以与放射性核素(¹²⁴I)偶联,构建MRI-PET双模态探针。这种探针可以准确检测对评估癌症转移至关重要的淋巴结(LN)。体内MRI/PET图像可以清晰地识别小的(约3毫米)淋巴结以及精确的解剖信息。使用生物分子修饰的多组分纳米颗粒的系统也可以在细胞治疗研究中监测基因表达和其他标志物。我们已经使用了带有MRI的杂交干细胞-磁性纳米颗粒探针来监测体内干细胞运输。磁性纳米颗粒和腺病毒的杂交探针进行的MRI可以检测靶细胞,并可以光学监测基因传递和绿色荧光蛋白的表达。这种多模态探针的每个组分都与其他模态相互补充,它们的协同材料特性最终在体外和体内生物系统中提供更准确的信息。
Acc Chem Res. 2008-12
Acc Chem Res. 2009-8-18
Top Magn Reson Imaging. 2007-6
J Nucl Med. 2008-6
Q J Nucl Med Mol Imaging. 2008-9
Chem Commun (Camb). 2009-6-28
Angew Chem Int Ed Engl. 2008
Theranostics. 2025-6-12
Front Bioeng Biotechnol. 2025-4-10
Exploration (Beijing). 2023-10-28
Biosensors (Basel). 2023-8-15
Adv Exp Med Biol. 2023