文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

作为纳米生物技术多模态探针的协同整合纳米颗粒

Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology.

作者信息

Cheon Jinwoo, Lee Jae-Hyun

机构信息

Department of Chemistry, Yonsei University, Seoul 120-749, Korea.

出版信息

Acc Chem Res. 2008 Dec;41(12):1630-40. doi: 10.1021/ar800045c.


DOI:10.1021/ar800045c
PMID:18698851
Abstract

Current biomedical imaging techniques including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT) are vital in the diagnosis of various diseases. Each imaging modality has its own merits and disadvantages, and a single technique does not possess all the required capabilities for comprehensive imaging. Therefore, multimodal imaging methods are quickly becoming important tools for state-of-the-art biomedical research and clinical diagnostics and therapeutics. In this Account, we will discuss synergistically integrated nanoparticle probes, which will be an essential tool in multimodal imaging technology. When inorganic nanoparticles are introduced into biological systems, their extremely small size and their exceptional physical and chemical properties make them useful probes for biological diagnostics. Nanoparticle probes can endow imaging techniques with enhanced signal sensitivity, better spatial resolution, and the ability to relay information about biological systems at the molecular and cellular levels. Simple magnetic nanoparticles function as MRI contrast enhancement probes. These magnetic nanoparticles can then serve as a core platform for the addition of other functional moieties including fluorescence tags, radionuclides, and other biomolecules for multimodal imaging, gene delivery, and cellular trafficking. For example, MRI-optical dual-modal probes composed of a fluorescent dye-doped silica (DySiO(2)) core surrounded by magnetic nanoparticles can macroscopically detect neuroblastoma cancer cells via MRI along with subcellular information via fluorescence imaging. Magnetic nanoparticles can also be coupled to radionuclides ((124)I) to construct MRI-PET dual-modal probes. Such probes can accurately detect lymph nodes (LNs), which are critical for assessing cancer metastasis. In vivo MRI/PET images can clearly identify small (approximately 3 mm) LNs along with precise anatomical information. Systems using multicomponent nanoparticles modified with biomolecules can also monitor gene expression and other markers in cell therapeutics studies. We have used hybrid stem cell-magnetic nanoparticle probes with MRI to monitor in vivo stem cell trafficking. MRI with hybrid probes of magnetic nanoparticles and adenovirus can detect target cells and can monitor gene delivery and the expression of green fluorescent proteins optically. Each component of such multimodal probes complements the other modalities, and their synergistic materials properties ultimately provide more accurate information in in vitro and in vivo biological systems.

摘要

当前的生物医学成像技术,包括磁共振成像(MRI)、正电子发射断层扫描(PET)和计算机X射线断层扫描(CT),在各种疾病的诊断中至关重要。每种成像方式都有其自身的优缺点,单一技术并不具备全面成像所需的所有能力。因此,多模态成像方法正迅速成为最先进的生物医学研究以及临床诊断和治疗的重要工具。在本综述中,我们将讨论协同集成的纳米颗粒探针,它将成为多模态成像技术的重要工具。当无机纳米颗粒被引入生物系统时,其极小的尺寸以及特殊的物理和化学性质使其成为生物诊断的有用探针。纳米颗粒探针可以赋予成像技术更高的信号灵敏度、更好的空间分辨率,以及在分子和细胞水平上传递有关生物系统信息的能力。简单的磁性纳米颗粒可作为MRI造影增强探针。这些磁性纳米颗粒随后可作为核心平台,用于添加其他功能部分,包括荧光标签、放射性核素和其他生物分子,以实现多模态成像、基因传递和细胞运输。例如,由荧光染料掺杂的二氧化硅(DySiO₂)核心被磁性纳米颗粒包围组成的MRI-光学双模态探针,可以通过MRI宏观检测神经母细胞瘤癌细胞,并通过荧光成像获得亚细胞信息。磁性纳米颗粒还可以与放射性核素(¹²⁴I)偶联,构建MRI-PET双模态探针。这种探针可以准确检测对评估癌症转移至关重要的淋巴结(LN)。体内MRI/PET图像可以清晰地识别小的(约3毫米)淋巴结以及精确的解剖信息。使用生物分子修饰的多组分纳米颗粒的系统也可以在细胞治疗研究中监测基因表达和其他标志物。我们已经使用了带有MRI的杂交干细胞-磁性纳米颗粒探针来监测体内干细胞运输。磁性纳米颗粒和腺病毒的杂交探针进行的MRI可以检测靶细胞,并可以光学监测基因传递和绿色荧光蛋白的表达。这种多模态探针的每个组分都与其他模态相互补充,它们的协同材料特性最终在体外和体内生物系统中提供更准确的信息。

相似文献

[1]
Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology.

Acc Chem Res. 2008-12

[2]
Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications.

Acc Chem Res. 2009-8-18

[3]
Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

Top Magn Reson Imaging. 2007-6

[4]
Molecular-genetic imaging based on reporter gene expression.

J Nucl Med. 2008-6

[5]
Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles.

Q J Nucl Med Mol Imaging. 2008-9

[6]
'Two is better than one'--probes for dual-modality molecular imaging.

Chem Commun (Camb). 2009-6-28

[7]
Chemical design of nanoparticle probes for high-performance magnetic resonance imaging.

Angew Chem Int Ed Engl. 2008

[8]
Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging.

Biomaterials. 2010-6-20

[9]
Towards multimodal nanoparticle labels for molecular imaging of biological processes.

Med Hypotheses. 2007

[10]
Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.

Acc Chem Res. 2008-2

引用本文的文献

[1]
Overcoming barriers in glioblastoma: The potential of CAR T cell immunotherapy.

Theranostics. 2025-6-12

[2]
Dual-imaging nanoparticles based on surface-modified magnetic nanoparticles and biodegradable photoluminescent polymers.

Front Bioeng Biotechnol. 2025-4-10

[3]
Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field.

Toxics. 2024-8-20

[4]
Iodinated gadolinium-gold nanomaterial as a multimodal contrast agent for cartilage tissue imaging.

APL Bioeng. 2024-8-19

[5]
Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics.

Commun Biol. 2024-4-1

[6]
Near-infrared-II fluorescence/magnetic resonance double modal imaging of transplanted stem cells using lanthanide co-doped gadolinium oxide nanoparticles.

Anal Sci. 2024-6

[7]
Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: From "Seeing" to "Measuring".

Exploration (Beijing). 2023-10-28

[8]
Iron Nanoparticles Open Up New Directions for Promoting Healing in Chronic Wounds in the Context of Bacterial Infection.

Pharmaceutics. 2023-9-15

[9]
Colorimetric and Label-Free Optical Detection of Pb Ions via Colloidal Gold Nanoparticles.

Biosensors (Basel). 2023-8-15

[10]
Medical Imaging Technology and Imaging Agents.

Adv Exp Med Biol. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索