Pakhomova Svetlana, Bartlett Sue G, Augustus Alexandria, Kuzuyama Tomohisa, Newcomer Marcia E
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
J Biol Chem. 2008 Oct 17;283(42):28518-26. doi: 10.1074/jbc.M803709200. Epub 2008 Aug 12.
The fosfomycin resistance protein FomA inactivates fosfomycin by phosphorylation of the phosphonate group of the antibiotic in the presence of ATP and Mg(II). We report the crystal structure of FomA from the fosfomycin biosynthetic gene cluster of Streptomyces wedmorensis in complex with diphosphate and in ternary complex with the nonhydrolyzable ATP analog adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP), Mg(II), and fosfomycin, at 1.53 and 2.2 angstroms resolution, respectively. The polypeptide exhibits an open alphabetaalpha sandwich fold characteristic for the amino acid kinase family of enzymes. The diphosphate complex shows significant disorder in loops surrounding the active site. As a result, the nucleotide-binding site is wide open. Binding of the substrates is followed by the partial closure of the active site and ordering of the alpha2-helix. Structural comparison with N-acetyl-L-glutamate kinase shows several similarities in the site of phosphoryl transfer: 1) preservation of architecture of the catalytical amino acids of N-acetyl-L-glutamate kinase (Lys9, Lys216, and Asp150 in FomA); 2) good superposition of the phosphate acceptor groups of the substrates, and 3) good superposition of the diphosphate molecule with the beta- and gamma-phosphates of AMPPNP, suggesting that the reaction could proceed by an associative in-line mechanism. However, differences in conformations of the triphosphate moiety of AMPPNP molecules, the long distance (5.1 angstroms) between the phosphate acceptor and donor groups in FomA, and involvement of Lys18 instead of Lys9 in binding with the gamma-phosphate may indicate a different reaction mechanism. The present work identifies the active site residues of FomA responsible for substrate binding and specificity and proposes their roles in catalysis.
磷霉素抗性蛋白FomA在ATP和Mg(II)存在的情况下,通过使抗生素的膦酸酯基团磷酸化来使磷霉素失活。我们报道了来自韦氏链霉菌磷霉素生物合成基因簇的FomA与二磷酸形成的复合物以及与不可水解的ATP类似物腺苷5'-(β,γ-亚氨基)-三磷酸(AMPPNP)、Mg(II)和磷霉素形成的三元复合物的晶体结构,分辨率分别为1.53和2.2埃。该多肽呈现出氨基酸激酶家族酶特有的开放αβα三明治折叠结构。二磷酸复合物在活性位点周围的环中表现出明显的无序。因此,核苷酸结合位点是开放的。底物结合后,活性位点部分关闭,α2螺旋有序排列。与N-乙酰-L-谷氨酸激酶的结构比较显示在磷酰基转移位点有几个相似之处:1) 保留了N-乙酰-L-谷氨酸激酶催化氨基酸的结构(FomA中的Lys9、Lys216和Asp150);2)底物的磷酸受体基团有良好的重叠,3) 二磷酸分子与AMPPNP的β-和γ-磷酸有良好的重叠,表明反应可能通过缔合线性机制进行。然而,AMPPNP分子的三磷酸部分构象的差异、FomA中磷酸受体和供体基团之间的长距离(5.1埃)以及Lys18而非Lys9参与与γ-磷酸的结合可能表明存在不同的反应机制。本研究确定了FomA中负责底物结合和特异性的活性位点残基,并提出了它们在催化中的作用。