Suppr超能文献

针对细菌细胞壁的抗生素耐药性。

Resistance to antibiotics targeted to the bacterial cell wall.

机构信息

Institut de Biologie Structurale (IBS), Université Grenoble Alpes, 6 rue Jules Horowitz, 38027, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France; Centre National de la Recherche Scientifique (CNRS), UMR 5075, Grenoble, France; Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, Utrecht University, Utrecht, The Netherlands.

出版信息

Protein Sci. 2014 Mar;23(3):243-59. doi: 10.1002/pro.2414. Epub 2014 Jan 17.

Abstract

Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

摘要

肽聚糖是细菌细胞壁的主要成分。它是一个复杂的三维网格,环绕着整个细胞,由交替的聚糖链组成,通过短肽交联。在过去的五十年中,其生物合成机制一直是发现抗菌药物的首选目标。肽聚糖的合成在三个细胞区室(细胞质、膜和周质)中依次进行,已经鉴定出催化每个阶段的蛋白质的抑制剂,尽管并非所有抑制剂都适用于临床应用。然而,许多这些抗生素已经被耐药机制所削弱。结构生物学技术的应用对于理解这些过程以及开发克服这些过程的策略非常重要。本综述提供了对抗生素的耐药机制的概述,这些抗生素针对细菌细胞壁前体及其生物合成机制。还讨论了开发可以克服耐药性的新型抑制剂的策略。

相似文献

1
Resistance to antibiotics targeted to the bacterial cell wall.针对细菌细胞壁的抗生素耐药性。
Protein Sci. 2014 Mar;23(3):243-59. doi: 10.1002/pro.2414. Epub 2014 Jan 17.
4
Bacterial cell-wall recycling.细菌细胞壁的循环利用。
Ann N Y Acad Sci. 2013 Jan;1277(1):54-75. doi: 10.1111/j.1749-6632.2012.06813.x. Epub 2012 Nov 16.
8
Mode of action of beta-lactam antibiotics.β-内酰胺类抗生素的作用机制。
Pharmacol Ther. 1985;27(1):1-35. doi: 10.1016/0163-7258(85)90062-2.
10
The bacterial cell wall as a source of antibacterial targets.作为抗菌靶点来源的细菌细胞壁。
Expert Opin Ther Targets. 2002 Feb;6(1):1-19. doi: 10.1517/14728222.6.1.1.

引用本文的文献

1
Targeting Protein Disorder for the Remediation of Antimicrobial Resistance.靶向蛋白质紊乱以修复抗菌药物耐药性
ACS Omega. 2024 Dec 10;9(51):50589-50598. doi: 10.1021/acsomega.4c08427. eCollection 2024 Dec 24.
9
Intraspecific variation in antibiotic resistance potential within .种内抗生素耐药潜力的变异。
Microbiol Spectr. 2024 Jun 4;12(6):e0316223. doi: 10.1128/spectrum.03162-23. Epub 2024 Apr 25.

本文引用的文献

2
Investigational antimicrobial agents of 2013.2013 年的研究性抗菌药物。
Clin Microbiol Rev. 2013 Oct;26(4):792-821. doi: 10.1128/CMR.00033-13.
6
Telavancin versus vancomycin for bacteraemic hospital-acquired pneumonia.替考拉宁与万古霉素治疗菌血症型医院获得性肺炎的比较
Int J Antimicrob Agents. 2013 Oct;42(4):367-9. doi: 10.1016/j.ijantimicag.2013.06.003. Epub 2013 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验