Suppr超能文献

铜绿假单胞菌与. 之间磷霉素耐药机制的差异。

Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and .

机构信息

University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA.

Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia.

出版信息

Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0144621. doi: 10.1128/AAC.01446-21. Epub 2021 Nov 22.

Abstract

Multidrug-resistant (MDR) Pseudomonas aeruginosa presents a serious threat to public health due to its widespread resistance to numerous antibiotics. P. aeruginosa commonly causes nosocomial infections including urinary tract infections (UTI) which have become increasingly difficult to treat. The lack of effective therapeutic agents has renewed interest in fosfomycin, an old drug discovered in the 1960s and approved prior to the rigorous standards now required for drug approval. Fosfomycin has a unique structure and mechanism of action, making it a favorable therapeutic alternative for MDR pathogens that are resistant to other classes of antibiotics. The absence of susceptibility breakpoints for fosfomycin against P. aeruginosa limits its clinical use and interpretation due to extrapolation of breakpoints established for Escherichia coli or without supporting evidence. Furthermore, fosfomycin use and efficacy for treatment of P. aeruginosa are also limited by both inherent and acquired resistance mechanisms. This narrative review provides an update on currently identified mechanisms of resistance to fosfomycin, with a focus on those mediated by P. aeruginosa such as peptidoglycan recycling enzymes, chromosomal Fos enzymes, and transporter mutation. Additional fosfomycin resistance mechanisms exhibited by , including mutations in transporters and associated regulators, plasmid-mediated Fos enzymes, kinases, and modification, are also summarized and contrasted. These data highlight that different fosfomycin resistance mechanisms may be associated with elevated MIC values in P. aeruginosa compared to , emphasizing that extrapolation of E. coli breakpoints to P. aeruginosa should be avoided.

摘要

耐多药(MDR)铜绿假单胞菌由于对多种抗生素广泛耐药,对公共卫生构成严重威胁。铜绿假单胞菌常引起医院获得性感染,包括尿路感染(UTI),这些感染越来越难以治疗。由于缺乏有效的治疗药物,人们对 1960 年代发现的旧药物磷霉素重新产生了兴趣,该药物在现在药物批准所需的严格标准之前获得批准。磷霉素具有独特的结构和作用机制,使其成为对其他类抗生素耐药的 MDR 病原体的理想治疗选择。由于对铜绿假单胞菌缺乏针对磷霉素的药敏折点,限制了其临床应用和解释,因为只能从大肠杆菌推断出折点,或没有支持证据。此外,磷霉素的使用和治疗铜绿假单胞菌的疗效也受到固有和获得性耐药机制的限制。本综述介绍了目前鉴定的磷霉素耐药机制,重点介绍了铜绿假单胞菌介导的耐药机制,如肽聚糖回收酶、染色体 Fos 酶和转运体突变。还总结并对比了 表现出的其他磷霉素耐药机制,包括转运体和相关调节剂、质粒介导的 Fos 酶、激酶和修饰的突变。这些数据强调,与 相比,不同的磷霉素耐药机制可能与铜绿假单胞菌中 MIC 值升高有关,强调应避免将大肠杆菌折点推断到铜绿假单胞菌。

相似文献

1
Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and .
Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0144621. doi: 10.1128/AAC.01446-21. Epub 2021 Nov 22.
3
Fosfomycin resistance mechanisms in : an increasing threat.
Front Cell Infect Microbiol. 2023 Jul 4;13:1178547. doi: 10.3389/fcimb.2023.1178547. eCollection 2023.
6
Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences.
Int J Antimicrob Agents. 2019 Jan;53(1):22-28. doi: 10.1016/j.ijantimicag.2018.09.013. Epub 2018 Sep 27.
10
The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa.
J Bacteriol. 2009 Nov;191(22):6968-74. doi: 10.1128/JB.00748-09. Epub 2009 Sep 4.

引用本文的文献

1
Fosfomycin resistance determinants in Escherichia coli isolates of human and animal origin from Iran.
Mol Biol Rep. 2025 Jun 4;52(1):541. doi: 10.1007/s11033-025-10658-1.
3
Management of Carbapenem Resistant Gram-Negative Infections.
Indian J Pediatr. 2025 Apr 14. doi: 10.1007/s12098-025-05537-3.
4
5
Drug susceptibility of uropathogens isolated from patients treated at the Mazovian Specialized Hospital in Radom.
Acta Biochim Pol. 2025 Feb 27;72:14082. doi: 10.3389/abp.2025.14082. eCollection 2025.
7
Bacterial peptidoglycan as a living polymer.
Curr Opin Chem Biol. 2025 Feb;84:102562. doi: 10.1016/j.cbpa.2024.102562. Epub 2024 Dec 18.
8
Bacteriological and molecular study of fosfomycin resistance in uropathogenic Escherichia coli.
Braz J Microbiol. 2024 Jun;55(2):1091-1097. doi: 10.1007/s42770-024-01272-7. Epub 2024 Feb 17.
9
Intravenous Fosfomycin for Systemic Multidrug-Resistant Infections.
Antibiotics (Basel). 2023 Nov 23;12(12):1653. doi: 10.3390/antibiotics12121653.

本文引用的文献

1
Cefiderocol Activity Against Clinical Isolates Exhibiting Ceftolozane-Tazobactam Resistance.
Open Forum Infect Dis. 2021 Jun 12;8(7):ofab311. doi: 10.1093/ofid/ofab311. eCollection 2021 Jul.
3
Identification of , a Novel Plasmid-Mediated Fosfomycin Resistance Gene of Origin, in .
Infect Drug Resist. 2020 May 1;13:1273-1279. doi: 10.2147/IDR.S251360. eCollection 2020.
7
Characterization of FosL1, a Plasmid-Encoded Fosfomycin Resistance Protein Identified in Escherichia coli.
Antimicrob Agents Chemother. 2020 Mar 24;64(4). doi: 10.1128/AAC.02042-19.
8
Parenteral Fosfomycin for the Treatment of Multidrug Resistant Bacterial Infections: The Rise of the Epoxide.
Pharmacotherapy. 2019 Nov;39(11):1077-1094. doi: 10.1002/phar.2326. Epub 2019 Oct 14.
10
Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections.
Clin Microbiol Rev. 2019 Aug 28;32(4). doi: 10.1128/CMR.00031-19. Print 2019 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验