Suppr超能文献

基于纤维素溶剂的木质纤维素分级分离技术及酶促纤维素水解实现高效糖释放

Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.

作者信息

Moxley Geoffrey, Zhu Zhiguang, Zhang Y-H Percival

机构信息

Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061, USA.

出版信息

J Agric Food Chem. 2008 Sep 10;56(17):7885-90. doi: 10.1021/jf801303f. Epub 2008 Aug 15.

Abstract

Efficient liberation of fermentable soluble sugars from lignocellulosic biomass waste not only decreases solid waste handling but also produces value-added biofuels and biobased products. Industrial hemp, a special economic crop, is cultivated for its high-quality fibers and high-value seed oil, but its hollow stalk cords (hurds) are a cellulosic waste. The cellulose-solvent-based lignocellulose fractionation (CSLF) technology has been developed to separate lignocellulose components under modest reaction conditions (Zhang, Y.-H. P.; Ding, S.-Y.; Mielenz, J. R.; Elander, R.; Laser, M.; Himmel, M.; McMillan, J. D.; Lynd, L. R. Biotechnol. Bioeng. 2007, 97 (2), 214- 223). Three pretreatment conditions (acid concentration, reaction temperature, and reaction time) were investigated to treat industrial hemp hurds for a maximal sugar release: a combinatorial result of a maximal retention of solid cellulose and a maximal enzymatic cellulose hydrolysis. At the best treatment condition (84.0% H3PO4 at 50 degrees C for 60 min), the glucan digestibility was 96% at hour 24 at a cellulase loading of 15 filter paper units of cellulase per gram of glucan. The scanning electron microscopic images were presented for the CSLF-pretreated biomass for the first time, suggesting that CSLF can completely destruct the plant cell-wall structure, in a good agreement with the highest enzymatic cellulose digestibility and fastest hydrolysis rate. It was found that phosphoric acid only above a critical concentration (83%) with a sufficient reaction time can efficiently disrupt recalcitrant lignocellulose structures.

摘要

从木质纤维素生物质废料中高效释放可发酵可溶性糖,不仅能减少固体废物处理量,还能生产增值生物燃料和生物基产品。工业大麻是一种特殊经济作物,因其优质纤维和高价值种子油而被种植,但其空心茎秆(麻屑)是纤维素废料。基于纤维素溶剂的木质纤维素分级分离(CSLF)技术已被开发出来,用于在适度反应条件下分离木质纤维素成分(张,Y.-H. P.;丁,S.-Y.;米伦兹,J. R.;埃兰德,R.;拉泽尔,M.;希梅尔,M.;麦克米兰,J. D.;林德,L. R.《生物技术与生物工程》2007年,97(2),214 - 223)。研究了三种预处理条件(酸浓度、反应温度和反应时间)来处理工业大麻麻屑,以实现最大程度的糖释放:这是固体纤维素最大保留量和最大程度酶促纤维素水解的综合结果。在最佳处理条件(50℃下84.0%的磷酸处理60分钟)下,在每克葡聚糖15个滤纸单位纤维素酶的负载量下,24小时时葡聚糖消化率为96%。首次展示了CSLF预处理生物质的扫描电子显微镜图像,表明CSLF能完全破坏植物细胞壁结构,这与最高的酶促纤维素消化率和最快的水解速率高度一致。研究发现,只有高于临界浓度(83%)的磷酸并经过足够的反应时间,才能有效破坏顽固的木质纤维素结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验