Qin Wu, Wu Lingnan, Zheng Zongming, Dong Changqing, Yang Yongping
National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy Engineering, North China Electric Power University, Beijing 102206, China.
Molecules. 2014 Dec 18;19(12):21335-49. doi: 10.3390/molecules191221335.
The study focused on the structural sensitivity of lignin during the phosphoric acid-acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (β-O-4, β-β, 4-O-5, β-1, 5-5, α-O-4, and β-5) of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and β-O-4 linkage tend to break during the phosphoric acid-acetone pretreatment process. Then α-O-4 phosphorylation and β-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of β-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of β-O-4 in the H2PO4- functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.
该研究利用密度泛函理论计算,聚焦于磷酸 - 丙酮预处理过程中木质素的结构敏感性以及由此产生的水解和磷酸化反应机制。检测了木质素的七种最常见键(β - O - 4、β - β、4 - O - 5、β - 1、5 - 5、α - O - 4和β - 5)在磷酸、丙酮和水溶液中的化学稳定性,结果表明在磷酸 - 丙酮预处理过程中α - O - 4键和β - O - 4键易于断裂。随后,α - O - 4磷酸化和β - O - 4磷酸化在酸处理步骤中分别遵循两步反应机制。然而,由于在磷酸中α - O - 4的磷酸化比β - O - 4的磷酸化在能量上更容易实现,因此在一定操作条件下可以可控地实现α - O - 4的磷酸化,这可以调节H2PO4 - 功能化木质素中β - O - 4右侧的电子和空穴转移。这些结果为木质素的过程控制改性以及在木质素基印迹聚合物、传感器和分子器件中的潜在新应用提供了基本认识。