Suppr超能文献

黄斑旁毛细血管白细胞的搏动性。

Pulsatility of parafoveal capillary leukocytes.

作者信息

Martin Joy A, Roorda Austin

机构信息

University of Houston, College of Optometry, Houston, TX 77004-2020, USA.

出版信息

Exp Eye Res. 2009 Mar;88(3):356-60. doi: 10.1016/j.exer.2008.07.008. Epub 2008 Jul 30.

Abstract

The use of adaptive optics (AO) in a confocal scanning laser ophthalmoscope (AOSLO) allows for long-term imaging of parafoveal capillary leukocyte movement and measurement of leukocyte velocity without contrast dyes. We applied the AOSLO to investigate the possible role of the cardiac cycle on capillary leukocyte velocity by directly measuring capillary leukocyte pulsatility. The parafoveal regions of 8 eight normal healthy subjects with clear ocular media were imaged with an AOSLO. All subjects were dilated and cyclopleged. The AOSLO field of view was either 1.4x1.5 degrees or 2.35x2.5 degrees, the imaging wavelength was 532 nm and the frame rate was 30fps. A photoplethysmograph was used to record the subject's pulse synchronously with each AOSLO video. Parafoveal capillary leukocyte velocities and pulsatility were determined for two or three capillaries per subject. Leukocyte velocity and pulsatility were determined for all eight subjects. The mean parafoveal capillary leukocyte velocity for all subjects was V(mean)=1.30 mm/s (SD=+/-0.40 mm/s). There was a statistically significant difference between leukocyte velocities, V(max) and V(min), over the pulse cycle for each subject (p<0.05). The mean pulsatility was P(mean)=0.45 (+/-0.09). Parafoveal capillary leukocyte pulsatility can be directly and non-invasively measured without the use of contrast dyes using an AOSLO. A substantial amount of the variation found in leukocyte velocity is due to the pulsatility that is induced by the cardiac cycle. By controlling for the variation in leukocyte velocity caused by the cardiac cycle, we can better detect other changes in retinal leukocyte velocity induced by disease or pharmaceutical agents.

摘要

在共焦扫描激光检眼镜(AOSLO)中使用自适应光学(AO)技术,可在不使用造影剂的情况下,对黄斑旁毛细血管白细胞运动进行长期成像,并测量白细胞速度。我们应用AOSLO通过直接测量毛细血管白细胞搏动性,来研究心动周期对毛细血管白细胞速度的可能作用。对8名正常健康、眼介质清晰的受试者的黄斑旁区域进行AOSLO成像。所有受试者均散瞳及睫状肌麻痹。AOSLO的视野为1.4×1.5度或2.35×2.5度,成像波长为532nm,帧率为30fps。使用光电容积脉搏波描记仪与每个AOSLO视频同步记录受试者的脉搏。为每名受试者的两到三根毛细血管测定黄斑旁毛细血管白细胞速度和搏动性。测定了所有8名受试者的白细胞速度和搏动性。所有受试者的平均黄斑旁毛细血管白细胞速度为V(均值)=1.30mm/s(标准差=±0.40mm/s)。每名受试者在脉搏周期内白细胞速度V(最大值)和V(最小值)之间存在统计学显著差异(p<0.05)。平均搏动性为P(均值)=0.45(±0.09)。使用AOSLO可在不使用造影剂的情况下直接且无创地测量黄斑旁毛细血管白细胞搏动性。白细胞速度中发现的大量变化是由心动周期引起的搏动性所致。通过控制由心动周期引起的白细胞速度变化,我们可以更好地检测由疾病或药物引起的视网膜白细胞速度的其他变化。

相似文献

1
Pulsatility of parafoveal capillary leukocytes.
Exp Eye Res. 2009 Mar;88(3):356-60. doi: 10.1016/j.exer.2008.07.008. Epub 2008 Jul 30.
2
Direct and noninvasive assessment of parafoveal capillary leukocyte velocity.
Ophthalmology. 2005 Dec;112(12):2219-24. doi: 10.1016/j.ophtha.2005.06.033. Epub 2005 Oct 27.
3
Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy.
Invest Ophthalmol Vis Sci. 2011 Nov 29;52(12):9257-66. doi: 10.1167/iovs.11-8481.
4
Subclinical capillary changes in non-proliferative diabetic retinopathy.
Optom Vis Sci. 2012 May;89(5):E692-703. doi: 10.1097/OPX.0b013e3182548b07.
6
The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy.
Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):171-8. doi: 10.1167/iovs.11-8192.
7
Noninvasive visualization and analysis of parafoveal capillaries in humans.
Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1691-8. doi: 10.1167/iovs.09-4483. Epub 2009 Nov 11.

引用本文的文献

1
Validation of an automated method for studying retinal capillary blood flow.
Biomed Opt Express. 2024 Jan 16;15(2):802-817. doi: 10.1364/BOE.504074. eCollection 2024 Feb 1.
2
Flow Heterogeneity and Factors Contributing to the Variability in Retinal Capillary Blood Flow.
Invest Ophthalmol Vis Sci. 2023 Jul 3;64(10):15. doi: 10.1167/iovs.64.10.15.
3
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
4
Theoretical versus empirical measures of retinal magnification for scaling AOSLO images.
J Opt Soc Am A Opt Image Sci Vis. 2021 Oct 1;38(10):1400-1408. doi: 10.1364/JOSAA.435917.
5
Adaptive optics: principles and applications in ophthalmology.
Eye (Lond). 2021 Jan;35(1):244-264. doi: 10.1038/s41433-020-01286-z. Epub 2020 Nov 30.
6
Full-field flicker evoked changes in parafoveal retinal blood flow.
Sci Rep. 2020 Sep 29;10(1):16051. doi: 10.1038/s41598-020-73032-0.
7
Imaging Retinal Activity in the Living Eye.
Annu Rev Vis Sci. 2019 Sep 15;5:15-45. doi: 10.1146/annurev-vision-091517-034239.
8
Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation.
PLoS One. 2019 Jun 25;14(6):e0218918. doi: 10.1371/journal.pone.0218918. eCollection 2019.
10
Noninvasive characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging.
Biomed Opt Express. 2018 Jul 12;9(8):3653-3677. doi: 10.1364/BOE.9.003653. eCollection 2018 Aug 1.

本文引用的文献

1
Automatic retinal blood flow calculation using spectral domain optical coherence tomography.
Opt Express. 2007 Nov 12;15(23):15193-206. doi: 10.1364/oe.15.015193.
2
3
Adaptive optics scanning laser ophthalmoscopy.
Opt Express. 2002 May 6;10(9):405-12. doi: 10.1364/oe.10.000405.
4
In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells.
Invest Ophthalmol Vis Sci. 2008 Jan;49(1):467-73. doi: 10.1167/iovs.07-0605.
5
MEMS-based adaptive optics scanning laser ophthalmoscopy.
Opt Lett. 2006 May 1;31(9):1268-70. doi: 10.1364/ol.31.001268.
6
Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope.
J Biomed Opt. 2006 Jan-Feb;11(1):014002. doi: 10.1117/1.2166434.
7
Direct and noninvasive assessment of parafoveal capillary leukocyte velocity.
Ophthalmology. 2005 Dec;112(12):2219-24. doi: 10.1016/j.ophtha.2005.06.033. Epub 2005 Oct 27.
9
In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography.
Arch Ophthalmol. 2003 Feb;121(2):235-9. doi: 10.1001/archopht.121.2.235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验