Stadler A M, Digel I, Artmann G M, Embs J P, Zaccai G, Büldt G
Institut Laue-Langevin, Grenoble, France.
Biophys J. 2008 Dec;95(11):5449-61. doi: 10.1529/biophysj.108.138040. Epub 2008 Aug 15.
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
最近,通过对单个红细胞(RBC)进行微量移液管抽吸实验以及对血红蛋白溶液进行圆二色光谱分析,发现了血红蛋白行为在接近体温时的转变。转变温度与多种物种的体温直接相关。在探索这种转变的分子基础时,我们展示了体内全血红细胞中血红蛋白动力学温度依赖性的中子散射测量结果。数据显示,在人体温度36.9摄氏度时,内部蛋白质运动的几何结构发生了变化。高于该温度,氨基酸侧链运动占据的体积比正常温度依赖性预期的要大,表明蛋白质发生了部分展开。还测量了红细胞中蛋白质的整体扩散情况,研究结果与不带电硬球胶体短时间自扩散的理论预测结果吻合良好。结果表明,皮秒时间范围内和埃长度尺度上的分子动力学变化很可能与体温下对整个红细胞产生的宏观效应有关。