Suppr超能文献

嗜热真菌氰酶的晶体结构及其对生物修复催化机制的启示。

Crystal structure of a thermophilic fungal cyanase and its implications on the catalytic mechanism for bioremediation.

机构信息

Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa.

Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.

出版信息

Sci Rep. 2021 Jan 11;11(1):277. doi: 10.1038/s41598-020-79489-3.

Abstract

Cyanase catalyzes the bicarbonate-dependent degradation of cyanate to produce ammonia and carbon dioxide, and ammonia is a considerable alternative nitrogen source. Strikingly, the cyanase from the thermophilic fungus Thermomyces lanuginosus (Tl-Cyn) has the highest catalytic efficiency reported among these enzymes. However, its molecular mechanism of action is not clearly understood, because currently there is no structural information available on fungal cyanases. Here we report the crystal structure of Tl-Cyn in complex with inhibitors malonate and formate at 2.2 Å resolution. The structure reveals extensive interactions at the subunit interfaces in a dimer, and a decamer is formed by a pentamer of these dimers. Our biochemical, kinetic and mutagenesis studies confirm the structural observations on the complex and provide further insights into its catalytic mechanism and inhibition. The structure has also aided the creation of a mutant enzyme with enhanced catalytic activity, and such enzymes may have the potential for biotechnological applications, including biotransformation and bioremediation. Moreover, other fungal cyanases with potentially high catalytic activity could also be predicted based on the Tl-Cyn structure, as the active site region among fungal cyanases are highly conserved.

摘要

腈酶催化氰酸盐依赖于碳酸氢盐的降解,生成氨和二氧化碳,而氨是一种相当有前途的氮源。引人注目的是,嗜热真菌Thermomyces lanuginosus(Tl-Cyn)的腈酶具有这些酶中报道的最高催化效率。然而,其作用的分子机制尚不清楚,因为目前尚无真菌腈酶的结构信息。在这里,我们报道了 Tl-Cyn 与抑制剂丙二酸盐和甲酸盐复合物的晶体结构,分辨率为 2.2Å。该结构揭示了二聚体之间在亚基界面的广泛相互作用,这些二聚体的五聚体形成了一个十聚体。我们的生化、动力学和突变研究证实了复合物的结构观察,并为其催化机制和抑制作用提供了进一步的见解。该结构还辅助了具有增强催化活性的突变酶的创建,并且这些酶可能具有生物技术应用的潜力,包括生物转化和生物修复。此外,还可以根据 Tl-Cyn 结构预测其他具有潜在高催化活性的真菌腈酶,因为真菌腈酶的活性位点区域高度保守。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/164e/7801690/7ded7abf1e25/41598_2020_79489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验