Suppr超能文献

阿尔茨海默病患者脑磁图背景活动的频谱和非线性分析

Spectral and nonlinear analyses of MEG background activity in patients with Alzheimer's disease.

作者信息

Hornero Roberto, Escudero Javier, Fernández Alberto, Poza Jesús, Gómez Carlos

机构信息

Department of Signal Theory and Communications, Escuela Técnica Superior (ETS) de Ingenieros de Telecomunicación, University of Valladolid, Valladolid 47011, Spain.

出版信息

IEEE Trans Biomed Eng. 2008 Jun;55(6):1658-65. doi: 10.1109/tbme.2008.919872.

Abstract

The aim of the present study is to analyze the magnetoencephalogram (MEG) background activity from patients with Alzheimer's disease (AD) and elderly control subjects. MEG recordings from 20 AD patients and 21 controls were analyzed by means of two spectral [median frequency (MF) and spectral entropy (SpecEn)] and two nonlinear parameters [approximate entropy (ApEn) and Lempel-Ziv complexity (LZC)]. In the AD diagnosis, the highest accuracy of 75.6% (80% sensitivity, 71.4% specificity) was obtained with the MF according to a linear discriminant analysis (LDA) with a leave-one-out cross-validation procedure. Moreover, we wanted to assess whether these spectral and nonlinear analyses could provide complementary information to improve the AD diagnosis. After a forward stepwise LDA with a leave-one-out cross-validation procedure, one spectral (MF) and one nonlinear parameter (ApEn) were automatically selected. In this model, an accuracy of 80.5% (80.0% sensitivity, 81.0% specificity) was achieved. We conclude that spectral and nonlinear analyses from spontaneous MEG activity could be complementary methods to help in AD detection.

摘要

本研究的目的是分析阿尔茨海默病(AD)患者和老年对照受试者的脑磁图(MEG)背景活动。通过两种频谱参数[中频(MF)和频谱熵(SpecEn)]以及两种非线性参数[近似熵(ApEn)和莱姆尔-齐夫复杂度(LZC)]对20例AD患者和21例对照的MEG记录进行了分析。在AD诊断中,根据留一法交叉验证程序的线性判别分析(LDA),MF获得了最高75.6%的准确率(80%的灵敏度,71.4%的特异性)。此外,我们想评估这些频谱和非线性分析是否能提供补充信息以改善AD诊断。经过留一法交叉验证程序的向前逐步LDA后,自动选择了一个频谱参数(MF)和一个非线性参数(ApEn)。在该模型中,实现了80.5%的准确率(80.0%的灵敏度,81.0%的特异性)。我们得出结论,自发MEG活动的频谱和非线性分析可能是有助于AD检测的补充方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验