Suppr超能文献

通过交叉熵指标测量阿尔茨海默病和轻度认知障碍中自发脑电图神经耦合的变化

Measuring Alterations of Spontaneous EEG Neural Coupling in Alzheimer's Disease and Mild Cognitive Impairment by Means of Cross-Entropy Metrics.

作者信息

Ruiz-Gómez Saúl J, Gómez Carlos, Poza Jesús, Martínez-Zarzuela Mario, Tola-Arribas Miguel A, Cano Mónica, Hornero Roberto

机构信息

Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.

IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain.

出版信息

Front Neuroinform. 2018 Oct 30;12:76. doi: 10.3389/fninf.2018.00076. eCollection 2018.

Abstract

Alzheimer's Disease (AD) represents the most prevalent form of dementia and is considered a major health problem due to its high prevalence and its economic costs. An accurate characterization of the underlying neural dynamics in AD is crucial in order to adopt effective treatments. In this regard, mild cognitive impairment (MCI) is an important clinical entity, since it is a risk-state for developing dementia. In the present study, coupling patterns of 111 resting-state electroencephalography (EEG) recordings were analyzed. Specifically, we computed Cross-Approximate Entropy () and Cross-Sample Entropy () of 37 patients with dementia due to AD, 37 subjects with MCI, and 37 healthy control (HC) subjects. Our results showed that outperformed , revealing higher number of significant connections among the three groups (Kruskal-Wallis test, FDR-corrected -values < 0.05). AD patients exhibited statistically significant lower similarity values at θ and β frequency bands compared to HC. MCI is also characterized by a global decrease of similarity in all bands, being only significant at β. These differences shows that β band might play a significant role in the identification of early stages of AD. Our results suggest that could increase the insight into brain dynamics at different AD stages. Consequently, it may contribute to develop early AD biomarkers, potentially useful as diagnostic information.

摘要

阿尔茨海默病(AD)是最常见的痴呆形式,由于其高患病率和经济成本,被视为一个主要的健康问题。准确描述AD潜在的神经动力学对于采用有效的治疗方法至关重要。在这方面,轻度认知障碍(MCI)是一个重要的临床实体,因为它是发展为痴呆的风险状态。在本研究中,分析了111份静息态脑电图(EEG)记录的耦合模式。具体而言,我们计算了37例AD所致痴呆患者、37例MCI受试者和37例健康对照(HC)受试者的交叉近似熵()和交叉样本熵()。我们的结果表明,优于,揭示了三组之间更多的显著连接(Kruskal-Wallis检验,FDR校正值<0.05)。与HC相比,AD患者在θ和β频段的相似性值在统计学上显著较低。MCI的特征还在于所有频段的相似性整体下降,仅在β频段显著。这些差异表明β频段可能在AD早期阶段的识别中起重要作用。我们的结果表明,可能会增加对不同AD阶段脑动力学的深入了解。因此,它可能有助于开发早期AD生物标志物, potentially useful as diagnostic information.(原文最后一句英文表述有误,正确的应该是“Potentially useful as diagnostic information.”,翻译为“作为诊断信息可能有用” ) 因此,它可能有助于开发早期AD生物标志物,作为诊断信息可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/091f/6232874/437f40300728/fninf-12-00076-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验