Suppr超能文献

短跑训练可提高1型糖尿病患者在高强度运动期间的肌肉氧化代谢。

Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes.

作者信息

Harmer Alison R, Chisholm Donald J, McKenna Michael J, Hunter Sandra K, Ruell Patricia A, Naylor Justine M, Maxwell Lyndal J, Flack Jeff R

机构信息

1Discipline of Physiotherapy, University of Sydney, Lidcombe, New South Wales, Australia.

出版信息

Diabetes Care. 2008 Nov;31(11):2097-102. doi: 10.2337/dc08-0329. Epub 2008 Aug 20.

Abstract

OBJECTIVE

To investigate sprint-training effects on muscle metabolism during exercise in subjects with (type 1 diabetic group) and without (control group) type 1 diabetes.

RESEARCH DESIGN AND METHODS

Eight subjects with type 1 diabetes and seven control subjects, matched for age, BMI, and maximum oxygen uptake (Vo(2peak)), undertook 7 weeks of sprint training. Pretraining, subjects cycled to exhaustion at 130% Vo(2peak). Posttraining subjects performed an identical test. Vastus lateralis biopsies at rest and immediately after exercise were assayed for metabolites, high-energy phosphates, and enzymes. Arterialized venous blood drawn at rest and after exercise was analyzed for lactate and [H(+)]. Respiratory measures were obtained on separate days during identical tests and during submaximal tests before and after training.

RESULTS

Pretraining, maximal resting activities of hexokinase, citrate synthase, and pyruvate dehydrogenase did not differ between groups. Muscle lactate accumulation with exercise was higher in type 1 diabetic than nondiabetic subjects and corresponded to indexes of glycemia (A1C, fasting plasma glucose); however, glycogenolytic and glycolytic rates were similar. Posttraining, at rest, hexokinase activity increased in type 1 diabetic subjects; in both groups, citrate synthase activity increased and pyruvate dehydrogenase activity decreased; during submaximal exercise, fat oxidation was higher; and during intense exercise, peak ventilation and carbon dioxide output, plasma lactate and [H(+)], muscle lactate, glycogenolytic and glycolytic rates, and ATP degradation were lower in both groups.

CONCLUSIONS

High-intensity exercise training was well tolerated, reduced metabolic destabilization (of lactate, H(+), glycogenolysis/glycolysis, and ATP) during intense exercise, and enhanced muscle oxidative metabolism in young adults with type 1 diabetes. The latter may have clinically important health benefits.

摘要

目的

研究短跑训练对1型糖尿病患者(1型糖尿病组)和非1型糖尿病患者(对照组)运动期间肌肉代谢的影响。

研究设计与方法

8名1型糖尿病患者和7名对照受试者,年龄、体重指数和最大摄氧量(Vo₂峰值)相匹配,进行了7周的短跑训练。训练前,受试者以130%Vo₂峰值的强度骑车至力竭。训练后,受试者进行相同测试。在休息时和运动后立即对股外侧肌活检组织进行代谢物、高能磷酸盐和酶的检测。在休息时和运动后采集动脉化静脉血,分析乳酸和[H⁺]。在相同测试期间以及训练前后的次最大测试期间,在不同日期进行呼吸测量。

结果

训练前,两组间己糖激酶、柠檬酸合酶和丙酮酸脱氢酶的最大静息活性无差异。1型糖尿病患者运动时肌肉乳酸积累高于非糖尿病受试者,且与血糖指标(糖化血红蛋白、空腹血糖)相关;然而,糖原分解和糖酵解速率相似。训练后,休息时,1型糖尿病患者的己糖激酶活性增加;两组中,柠檬酸合酶活性增加,丙酮酸脱氢酶活性降低;在次最大运动期间,脂肪氧化增加;在剧烈运动期间,两组的峰值通气量和二氧化碳排出量、血浆乳酸和[H⁺]、肌肉乳酸、糖原分解和糖酵解速率以及ATP降解均降低。

结论

高强度运动训练耐受性良好,可降低剧烈运动期间的代谢不稳定(乳酸、H⁺、糖原分解/糖酵解和ATP),并增强1型糖尿病青年患者的肌肉氧化代谢。后者可能具有重要的临床健康益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/681a/2571053/4a87c3d3b7bd/zdc0110872430001.jpg

相似文献

1
Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes.
Diabetes Care. 2008 Nov;31(11):2097-102. doi: 10.2337/dc08-0329. Epub 2008 Aug 20.
2
Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.
J Appl Physiol (1985). 2006 Jun;100(6):2041-7. doi: 10.1152/japplphysiol.01220.2005. Epub 2006 Feb 9.
3
Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.
J Appl Physiol (1985). 2000 Nov;89(5):1793-803. doi: 10.1152/jappl.2000.89.5.1793.
4
Effects of sprint training on extrarenal potassium regulation with intense exercise in Type 1 diabetes.
J Appl Physiol (1985). 2006 Jan;100(1):26-34. doi: 10.1152/japplphysiol.00240.2005. Epub 2005 Sep 22.
6
Effects of short-term submaximal training in humans on muscle metabolism in exercise.
Am J Physiol. 1998 Jul;275(1):E132-9. doi: 10.1152/ajpendo.1998.275.1.E132.
7
Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.
Acta Physiol Scand. 1997 Dec;161(4):439-45. doi: 10.1046/j.1365-201X.1997.00244.x.
8
Effect of endurance training on muscle TCA cycle metabolism during exercise in humans.
J Appl Physiol (1985). 2004 Aug;97(2):579-84. doi: 10.1152/japplphysiol.01344.2003. Epub 2004 Apr 30.
10
Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?
Scand J Med Sci Sports. 2006 Jun;16(3):209-14. doi: 10.1111/j.1600-0838.2005.00480.x.

引用本文的文献

1
Nonhistone lactylation: A hub for tumour metabolic reprogramming and epigenetic regulation.
J Transl Med. 2025 Aug 12;23(1):901. doi: 10.1186/s12967-025-06813-8.
2
Lactate-induced lactylation: from basic research to clinical perspectives.
Front Pharmacol. 2025 Jun 13;16:1586973. doi: 10.3389/fphar.2025.1586973. eCollection 2025.
6
Burning lactic acid: a road to revitalizing antitumor immunity.
Front Med. 2025 Mar 22. doi: 10.1007/s11684-025-1126-6.
8
Tailoring Exercise Prescription for Effective Diabetes Glucose Management.
J Clin Endocrinol Metab. 2025 Feb 25;110(Supplement_2):S118-S130. doi: 10.1210/clinem/dgae908.
9
The Stimulator of Interferon Genes Deficiency Attenuates Diabetic Myopathy Through Inhibiting NLRP3-Mediated Pyroptosis.
J Cachexia Sarcopenia Muscle. 2025 Feb;16(1):e13649. doi: 10.1002/jcsm.13649. Epub 2024 Nov 27.
10
Mechanisms of insulin resistance in type 1 diabetes mellitus: A case of glucolipotoxicity in skeletal muscle.
J Cell Physiol. 2024 Dec;239(12):e31419. doi: 10.1002/jcp.31419. Epub 2024 Aug 28.

本文引用的文献

1
Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.
J Physiol. 2008 Jan 1;586(1):151-60. doi: 10.1113/jphysiol.2007.142109. Epub 2007 Nov 8.
4
Effects of sprint training on extrarenal potassium regulation with intense exercise in Type 1 diabetes.
J Appl Physiol (1985). 2006 Jan;100(1):26-34. doi: 10.1152/japplphysiol.00240.2005. Epub 2005 Sep 22.
5
Muscle metabolism during sprint exercise in man: influence of sprint training.
J Sci Med Sport. 2004 Sep;7(3):314-22. doi: 10.1016/s1440-2440(04)80026-4.
6
Inflexibility of energy substrate oxidation in type 1 diabetic patients.
Metabolism. 2004 May;53(5):655-9. doi: 10.1016/j.metabol.2003.12.013.
7
Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans.
J Physiol. 2004 Apr 1;556(Pt 1):297-304. doi: 10.1113/jphysiol.2003.058222. Epub 2004 Jan 14.
8
Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes.
Am J Physiol Endocrinol Metab. 2003 Apr;284(4):E655-62. doi: 10.1152/ajpendo.00343.2002.
9
Lactate induces insulin resistance in skeletal muscle by suppressing glycolysis and impairing insulin signaling.
Am J Physiol Endocrinol Metab. 2002 Aug;283(2):E233-40. doi: 10.1152/ajpendo.00557.2001.
10
Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.
J Appl Physiol (1985). 2000 Nov;89(5):1793-803. doi: 10.1152/jappl.2000.89.5.1793.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验