Schuster S, Schuster R, Heinrich R
Humboldt-Universität zu Berlin, Sektion Biologie, Bereich Biophysik, Federal Republic of Germany.
J Math Biol. 1991;29(5):443-55. doi: 10.1007/BF00160471.
The multiobjective problem of minimizing all intermediate concentrations is solved for a model of glycolysis, the pentose monophosphate shunt and the glutathione system in human erythrocytes. It turns out that one solution out of four obtained corresponds qualitatively to the real system. Furthermore, it is shown that for any reaction system, the mentioned optimality principle implies distinct time hierarchy in that some reactions are infinitely fast and subsist in quasi-equilibrium. Finally, the relationships to the standard method of deriving enzymatic rate laws are discussed.
针对人类红细胞中的糖酵解、磷酸戊糖途径和谷胱甘肽系统模型,求解了使所有中间浓度最小化的多目标问题。结果表明,所得到的四个解中的一个在性质上与实际系统相符。此外,研究表明,对于任何反应系统,上述最优性原理意味着存在不同的时间层次结构,即某些反应无限快并处于准平衡状态。最后,讨论了与推导酶促速率定律的标准方法的关系。