Suppr超能文献

组合反应网络的精确模型约简

Exact model reduction of combinatorial reaction networks.

作者信息

Conzelmann Holger, Fey Dirk, Gilles Ernst D

机构信息

Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106, Magdeburg, Germany.

出版信息

BMC Syst Biol. 2008 Aug 28;2:78. doi: 10.1186/1752-0509-2-78.

Abstract

BACKGROUND

Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models.

RESULTS

We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs) to a model with 87 ODEs.

CONCLUSION

The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

摘要

背景

受体和支架蛋白通常拥有大量不同的结合结构域,可诱导形成大型多蛋白信号复合物。由于组合原因,可区分物种的数量随结合结构域数量呈指数增长,很容易达到数百万种。即使仅包含有限数量的组分和结合结构域,所得模型也非常大且难以管理。一种新颖的模型简化技术能够显著简化这些模型并使其模块化。

结果

我们介绍了扩展并完善已引入方法的方法。例如,我们提供了处理多支架复合物形成以及受体二聚化的技术。此外,我们讨论了一种新的建模方法,该方法允许直接生成精确简化的模型结构。所开发的方法用于将包含5182个常微分方程(ODE)的表皮生长因子(EGF)和胰岛素受体串扰模型简化为一个具有87个ODE的模型。

结论

本论文中提出的方法显著增强了准确简化组合反应网络模型的现有方法。

相似文献

1
Exact model reduction of combinatorial reaction networks.
BMC Syst Biol. 2008 Aug 28;2:78. doi: 10.1186/1752-0509-2-78.
3
Topology of small-world networks of protein-protein complex structures.
Bioinformatics. 2005 Apr 15;21(8):1311-5. doi: 10.1093/bioinformatics/bti167. Epub 2005 Jan 19.
4
Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity.
Biophys J. 2005 Aug;89(2):951-66. doi: 10.1529/biophysj.105.060533. Epub 2005 May 27.
5
Reduced modeling of signal transduction - a modular approach.
BMC Bioinformatics. 2007 Sep 13;8:336. doi: 10.1186/1471-2105-8-336.
6
An anomalous distance dependence of intraprotein chlorophyll-carotenoid triplet energy transfer.
Biophys J. 2005 Oct;89(4):L28-30. doi: 10.1529/biophysj.105.069609. Epub 2005 Jul 29.
7
The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data.
PLoS Comput Biol. 2009 Aug;5(8):e1000438. doi: 10.1371/journal.pcbi.1000438. Epub 2009 Aug 7.
8
Depicting combinatorial complexity with the molecular interaction map notation.
Mol Syst Biol. 2006;2:51. doi: 10.1038/msb4100088. Epub 2006 Oct 3.
9
Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking.
J Biomol NMR. 2006 Apr;34(4):237-44. doi: 10.1007/s10858-006-0024-8.
10
Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.
Methods Mol Biol. 2008;484:559-78. doi: 10.1007/978-1-59745-398-1_33.

引用本文的文献

1
Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.
Microbiol Spectr. 2024 May 2;12(5):e0228723. doi: 10.1128/spectrum.02287-23. Epub 2024 Mar 20.
2
Inferring phenomenological models of first passage processes.
PLoS Comput Biol. 2021 Mar 5;17(3):e1008740. doi: 10.1371/journal.pcbi.1008740. eCollection 2021 Mar.
3
Modeling cell line-specific recruitment of signaling proteins to the insulin-like growth factor 1 receptor.
PLoS Comput Biol. 2019 Jan 17;15(1):e1006706. doi: 10.1371/journal.pcbi.1006706. eCollection 2019 Jan.
4
Automated visualization of rule-based models.
PLoS Comput Biol. 2017 Nov 13;13(11):e1005857. doi: 10.1371/journal.pcbi.1005857. eCollection 2017 Nov.
5
Maximal aggregation of polynomial dynamical systems.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10029-10034. doi: 10.1073/pnas.1702697114. Epub 2017 Sep 6.
6
Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.
Bull Math Biol. 2017 Jul;79(7):1449-1486. doi: 10.1007/s11538-017-0277-2. Epub 2017 Jun 27.
7
Modeling for (physical) biologists: an introduction to the rule-based approach.
Phys Biol. 2015 Jul 16;12(4):045007. doi: 10.1088/1478-3975/12/4/045007.
8
Analytical reduction of combinatorial complexity arising from multiple protein modification sites.
J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.1215.
9
Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria.
Mol Syst Biol. 2014 Jun 21;10(6):731. doi: 10.15252/msb.20134955.

本文引用的文献

1
ALC: automated reduction of rule-based models.
BMC Syst Biol. 2008 Oct 31;2:91. doi: 10.1186/1752-0509-2-91.
2
Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.
Methods Mol Biol. 2008;484:559-78. doi: 10.1007/978-1-59745-398-1_33.
3
Reduced modeling of signal transduction - a modular approach.
BMC Bioinformatics. 2007 Sep 13;8:336. doi: 10.1186/1471-2105-8-336.
4
The insulin and EGF receptor structures: new insights into ligand-induced receptor activation.
Trends Biochem Sci. 2007 Mar;32(3):129-37. doi: 10.1016/j.tibs.2007.01.001. Epub 2007 Feb 5.
5
Thermodynamically feasible kinetic models of reaction networks.
Biophys J. 2007 Mar 15;92(6):1846-57. doi: 10.1529/biophysj.106.094094. Epub 2007 Jan 5.
6
Combinatorial complexity and dynamical restriction of network flows in signal transduction.
Syst Biol (Stevenage). 2005 Mar;2(1):5-15. doi: 10.1049/sb:20045031.
8
EGF-ERBB signalling: towards the systems level.
Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16. doi: 10.1038/nrm1962.
9
Phosphotyrosine interactome of the ErbB-receptor kinase family.
Mol Syst Biol. 2005;1:2005.0008. doi: 10.1038/msb4100012. Epub 2005 May 25.
10
A methodology for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics. 2006 Feb 7;7:56. doi: 10.1186/1471-2105-7-56.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验