Conzelmann Holger, Fey Dirk, Gilles Ernst D
Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106, Magdeburg, Germany.
BMC Syst Biol. 2008 Aug 28;2:78. doi: 10.1186/1752-0509-2-78.
Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models.
We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs) to a model with 87 ODEs.
The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.
受体和支架蛋白通常拥有大量不同的结合结构域,可诱导形成大型多蛋白信号复合物。由于组合原因,可区分物种的数量随结合结构域数量呈指数增长,很容易达到数百万种。即使仅包含有限数量的组分和结合结构域,所得模型也非常大且难以管理。一种新颖的模型简化技术能够显著简化这些模型并使其模块化。
我们介绍了扩展并完善已引入方法的方法。例如,我们提供了处理多支架复合物形成以及受体二聚化的技术。此外,我们讨论了一种新的建模方法,该方法允许直接生成精确简化的模型结构。所开发的方法用于将包含5182个常微分方程(ODE)的表皮生长因子(EGF)和胰岛素受体串扰模型简化为一个具有87个ODE的模型。
本论文中提出的方法显著增强了准确简化组合反应网络模型的现有方法。