Buckeridge David L, Okhmatovskaia Anna, Tu Samson, O'Connor Martin, Nyulas Csongor, Musen Mark A
Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada.
J Am Med Inform Assoc. 2008 Nov-Dec;15(6):760-9. doi: 10.1197/jamia.M2799. Epub 2008 Aug 28.
Statistical aberrancy-detection algorithms play a central role in automated public health systems, analyzing large volumes of clinical and administrative data in real-time with the goal of detecting disease outbreaks rapidly and accurately. Not all algorithms perform equally well in terms of sensitivity, specificity, and timeliness in detecting disease outbreaks and the evidence describing the relative performance of different methods is fragmented and mainly qualitative.
We developed and evaluated a unified model of aberrancy-detection algorithms and a software infrastructure that uses this model to conduct studies to evaluate detection performance. We used a task-analytic methodology to identify the common features and meaningful distinctions among different algorithms and to provide an extensible framework for gathering evidence about the relative performance of these algorithms using a number of evaluation metrics. We implemented our model as part of a modular software infrastructure (Biological Space-Time Outbreak Reasoning Module, or BioSTORM) that allows configuration, deployment, and evaluation of aberrancy-detection algorithms in a systematic manner.
We assessed the ability of our model to encode the commonly used EARS algorithms and the ability of the BioSTORM software to reproduce an existing evaluation study of these algorithms.
Using our unified model of aberrancy-detection algorithms, we successfully encoded the EARS algorithms, deployed these algorithms using BioSTORM, and were able to reproduce and extend previously published evaluation results.
The validated model of aberrancy-detection algorithms and its software implementation will enable principled comparison of algorithms, synthesis of results from evaluation studies, and identification of surveillance algorithms for use in specific public health settings.
统计异常检测算法在自动化公共卫生系统中发挥着核心作用,实时分析大量临床和管理数据,旨在快速准确地检测疾病暴发。并非所有算法在检测疾病暴发的敏感性、特异性和及时性方面都表现得同样出色,且描述不同方法相对性能的证据零散且主要是定性的。
我们开发并评估了一个异常检测算法统一模型以及一个使用该模型进行研究以评估检测性能的软件基础设施。我们采用任务分析方法来识别不同算法之间的共同特征和有意义的区别,并提供一个可扩展框架,以便使用多种评估指标收集有关这些算法相对性能的证据。我们将模型作为模块化软件基础设施(生物时空暴发推理模块,即BioSTORM)的一部分来实现,该基础设施允许以系统方式配置、部署和评估异常检测算法。
我们评估了模型对常用EARS算法进行编码的能力以及BioSTORM软件重现这些算法现有评估研究的能力。
使用我们的异常检测算法统一模型,我们成功对EARS算法进行了编码,使用BioSTORM部署了这些算法,并能够重现和扩展先前发表的评估结果。
经过验证的异常检测算法模型及其软件实现将能够对算法进行有原则的比较、综合评估研究结果,并识别适用于特定公共卫生环境的监测算法。