Suppr超能文献

多重荧光共振能量转移技术用于对活细胞中的多个信号事件进行成像。

Multiplexed FRET to image multiple signaling events in live cells.

作者信息

Grant David M, Zhang Wei, McGhee Ewan J, Bunney Tom D, Talbot Clifford B, Kumar Sunil, Munro Ian, Dunsby Christopher, Neil Mark A A, Katan Matilda, French Paul M W

机构信息

Chemical Biology Centre, Imperial College London, United Kingdom.

出版信息

Biophys J. 2008 Nov 15;95(10):L69-71. doi: 10.1529/biophysj.108.139204. Epub 2008 Aug 29.

Abstract

We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.

摘要

据我们所知,我们报告了一种新方法,可在同一细胞中同时对两种不同的荧光共振能量转移(FRET)传感器进行成像,且光谱串扰最小。以前基于两种FRET传感器光谱比率成像的方法受到限制,即第二种FRET对缺乏足够亮的受体,以及在四个光谱窗口进行测量时会产生光谱串扰。与光谱比率成像不同,荧光寿命成像(FLIM)仅需要测量供体荧光,且与受体发射无关。通过将新型红移TagRFP/mPlum FRET对的FLIM-FRET与ECFP/Venus对的光谱比率成像相结合,我们能够最大化所选荧光团之间的光谱分离,同时克服远红受体mPlum的低量子产率。使用该技术,我们能够读出用于报告表皮生长因子刺激后活细胞中小Ras GTP酶激活的TagRFP/mPlum分子间FRET传感器,以及用于监测同一细胞内钙瞬变的ECFP/Venus钙指示剂FRET传感器。因此,ECFP/Venus的光谱比率成像与TagRFP/mPlum的高速FLIM-FRET相结合,可以增加可用的光谱带宽,并在同一细胞内对多个FRET传感器进行可靠成像。此外,由于FLIM不需要供体和受体的化学计量相等,这种方法可用于报告同一细胞中的单分子FRET生物传感器和蛋白质-蛋白质相互作用。

相似文献

1
Multiplexed FRET to image multiple signaling events in live cells.
Biophys J. 2008 Nov 15;95(10):L69-71. doi: 10.1529/biophysj.108.139204. Epub 2008 Aug 29.
3
Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells.
Opt Express. 2010 May 24;18(11):11148-58. doi: 10.1364/OE.18.011148.
5
Fluorescence lifetime imaging microscopy (FLIM).
Adv Biochem Eng Biotechnol. 2005;95:143-75. doi: 10.1007/b102213.
7
Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy.
Microsc Res Tech. 2012 Mar;75(3):271-81. doi: 10.1002/jemt.21054. Epub 2011 Aug 19.

引用本文的文献

1
Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.
J Microsc. 2025 May;298(2):123-184. doi: 10.1111/jmi.13270. Epub 2024 Feb 15.
2
Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo.
Science. 2023 Jun 23;380(6651):1270-1275. doi: 10.1126/science.adf9725. Epub 2023 Jun 22.
4
Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing.
Nat Methods. 2022 Dec;19(12):1578-1589. doi: 10.1038/s41592-022-01684-z. Epub 2022 Dec 1.
6
Deciphering cell signaling networks with massively multiplexed biosensor barcoding.
Cell. 2021 Dec 9;184(25):6193-6206.e14. doi: 10.1016/j.cell.2021.11.005. Epub 2021 Nov 26.
7
Simultaneous readout of multiple FRET pairs using photochromism.
Nat Commun. 2021 Mar 31;12(1):2005. doi: 10.1038/s41467-021-22043-0.
9
Insights into the non-mitotic functions of Aurora kinase A: more than just cell division.
Cell Mol Life Sci. 2020 Mar;77(6):1031-1047. doi: 10.1007/s00018-019-03310-2. Epub 2019 Sep 27.
10
Review Article: Tools and trends for probing brain neurochemistry.
J Vac Sci Technol A. 2019 Jul;37(4):040802. doi: 10.1116/1.5051047. Epub 2019 Jun 11.

本文引用的文献

2
Improving the photostability of bright monomeric orange and red fluorescent proteins.
Nat Methods. 2008 Jun;5(6):545-51. doi: 10.1038/nmeth.1209. Epub 2008 May 4.
3
Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors.
Nat Methods. 2008 May;5(5):401-3. doi: 10.1038/nmeth.1207. Epub 2008 Apr 20.
4
Simultaneous recording of multiple cellular events by FRET.
ACS Chem Biol. 2008 Mar 20;3(3):156-60. doi: 10.1021/cb700247q.
5
Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
PLoS One. 2007 Oct 10;2(10):e1011. doi: 10.1371/journal.pone.0001011.
6
Bright monomeric red fluorescent protein with an extended fluorescence lifetime.
Nat Methods. 2007 Jul;4(7):555-7. doi: 10.1038/nmeth1062. Epub 2007 Jun 17.
7
Imaging molecular interactions in living cells by FRET microscopy.
Curr Opin Chem Biol. 2006 Oct;10(5):409-16. doi: 10.1016/j.cbpa.2006.08.021. Epub 2006 Sep 1.
8
Imaging activation of two Ras isoforms simultaneously in a single cell.
Chembiochem. 2005 Jan;6(1):78-85. doi: 10.1002/cbic.200400280.
9
Time-resolved fluorescence microscopy.
Photochem Photobiol Sci. 2005 Jan;4(1):13-22. doi: 10.1039/b412924p. Epub 2004 Nov 11.
10
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.
Nat Biotechnol. 2004 Dec;22(12):1567-72. doi: 10.1038/nbt1037. Epub 2004 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验