Grant David M, Zhang Wei, McGhee Ewan J, Bunney Tom D, Talbot Clifford B, Kumar Sunil, Munro Ian, Dunsby Christopher, Neil Mark A A, Katan Matilda, French Paul M W
Chemical Biology Centre, Imperial College London, United Kingdom.
Biophys J. 2008 Nov 15;95(10):L69-71. doi: 10.1529/biophysj.108.139204. Epub 2008 Aug 29.
We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.
据我们所知,我们报告了一种新方法,可在同一细胞中同时对两种不同的荧光共振能量转移(FRET)传感器进行成像,且光谱串扰最小。以前基于两种FRET传感器光谱比率成像的方法受到限制,即第二种FRET对缺乏足够亮的受体,以及在四个光谱窗口进行测量时会产生光谱串扰。与光谱比率成像不同,荧光寿命成像(FLIM)仅需要测量供体荧光,且与受体发射无关。通过将新型红移TagRFP/mPlum FRET对的FLIM-FRET与ECFP/Venus对的光谱比率成像相结合,我们能够最大化所选荧光团之间的光谱分离,同时克服远红受体mPlum的低量子产率。使用该技术,我们能够读出用于报告表皮生长因子刺激后活细胞中小Ras GTP酶激活的TagRFP/mPlum分子间FRET传感器,以及用于监测同一细胞内钙瞬变的ECFP/Venus钙指示剂FRET传感器。因此,ECFP/Venus的光谱比率成像与TagRFP/mPlum的高速FLIM-FRET相结合,可以增加可用的光谱带宽,并在同一细胞内对多个FRET传感器进行可靠成像。此外,由于FLIM不需要供体和受体的化学计量相等,这种方法可用于报告同一细胞中的单分子FRET生物传感器和蛋白质-蛋白质相互作用。