Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
ISS, Inc., 1602 Newton Drive, Champaign, IL, 61822, USA.
Commun Biol. 2022 Jan 11;5(1):18. doi: 10.1038/s42003-021-02938-w.
Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to quantify molecular compositions and study molecular states in complex cellular environment as the lifetime readings are not biased by fluorophore concentration or excitation power. However, the current methods to generate FLIM images are either computationally intensive or unreliable when the number of photons acquired at each pixel is low. Here we introduce a new deep learning-based method termed flimGANE (fluorescence lifetime imaging based on Generative Adversarial Network Estimation) that can rapidly generate accurate and high-quality FLIM images even in the photon-starved conditions. We demonstrated our model is up to 2,800 times faster than the gold standard time-domain maximum likelihood estimation (TD_MLE) and that flimGANE provides a more accurate analysis of low-photon-count histograms in barcode identification, cellular structure visualization, Förster resonance energy transfer characterization, and metabolic state analysis in live cells. With its advantages in speed and reliability, flimGANE is particularly useful in fundamental biological research and clinical applications, where high-speed analysis is critical.
荧光寿命成像显微镜(FLIM)是一种强大的工具,可以定量测量分子组成并研究复杂细胞环境中的分子状态,因为寿命读数不受荧光染料浓度或激发功率的影响。然而,当前生成 FLIM 图像的方法要么计算密集,要么在每个像素采集的光子数量较少时不可靠。在这里,我们介绍了一种新的基于深度学习的方法,称为 flimGANE(基于生成对抗网络估计的荧光寿命成像),即使在光子匮乏的情况下,它也可以快速生成准确、高质量的 FLIM 图像。我们的模型比黄金标准时域最大似然估计(TD_MLE)快 2800 倍,并且 flimGANE 提供了更准确的分析,包括在条形码识别、细胞结构可视化、Förster 共振能量转移特性和活细胞代谢状态分析中的低光子计数直方图。flimGANE 具有速度和可靠性方面的优势,在基础生物学研究和临床应用中特别有用,因为在这些领域,高速分析至关重要。