Suppr超能文献

在光合细菌深红红螺菌中不依赖GlnB激活的NifA变体的鉴定及功能表征。

Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum.

作者信息

Zou Xiaoxiao, Zhu Yu, Pohlmann Edward L, Li Jilun, Zhang Yaoping, Roberts Gary P

机构信息

Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China.

Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Microbiology (Reading). 2008 Sep;154(Pt 9):2689-2699. doi: 10.1099/mic.0.2008/019406-0.

Abstract

The activity of NifA, the transcriptional activator of the nitrogen fixation (nif) gene, is tightly regulated in response to ammonium and oxygen. However, the mechanisms for the regulation of NifA activity are quite different among various nitrogen-fixing bacteria. Unlike the well-studied NifL-NifA regulatory systems in Klebsiella pneumoniae and Azotobacter vinelandii, in Rhodospirillum rubrum NifA is activated by a direct protein-protein interaction with the uridylylated form of GlnB, which in turn causes a conformational change in NifA. We report the identification of several substitutions in the N-terminal GAF domain of R. rubrum NifA that allow NifA to be activated in the absence of GlnB. Presumably these substitutions cause conformational changes in NifA necessary for activation, without interaction with GlnB. We also found that wild-type NifA can be activated in a GlnB-independent manner under certain growth conditions, suggesting that some other effector(s) can also activate NifA. An attempt to use Tn5 mutagenesis to obtain mutants that altered the pool of these presumptive effector(s) failed, though much rarer spontaneous mutations in nifA were detected. This suggests that the necessary alteration of the pool of effector(s) for NifA activation cannot be obtained by knockout mutations.

摘要

固氮(nif)基因的转录激活因子NifA的活性会根据铵和氧气的情况受到严格调控。然而,在各种固氮细菌中,NifA活性的调控机制差异很大。与肺炎克雷伯菌和棕色固氮菌中研究充分的NifL-NifA调控系统不同,在深红红螺菌中,NifA通过与尿苷酸化形式的GlnB直接进行蛋白质-蛋白质相互作用而被激活,这反过来又会导致NifA的构象发生变化。我们报告了在深红红螺菌NifA的N端GAF结构域中鉴定出的几个取代,这些取代使得NifA在没有GlnB的情况下也能被激活。据推测,这些取代会导致NifA发生激活所需的构象变化,而无需与GlnB相互作用。我们还发现,野生型NifA在某些生长条件下可以以不依赖GlnB的方式被激活,这表明一些其他效应物也可以激活NifA。尽管检测到nifA中罕见得多的自发突变,但试图使用Tn5诱变来获得改变这些假定效应物库的突变体的尝试失败了。这表明无法通过敲除突变获得激活NifA所需的效应物库的必要改变。

相似文献

7
Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2782-7. doi: 10.1073/pnas.0306763101. Epub 2004 Feb 17.
9
Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control.
FEMS Microbiol Lett. 1999 Nov 15;180(2):263-70. doi: 10.1111/j.1574-6968.1999.tb08805.x.
10
GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli.
Res Microbiol. 2004 Jul-Aug;155(6):491-5. doi: 10.1016/j.resmic.2004.03.002.

引用本文的文献

2
Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis.
mSystems. 2021 Dec 21;6(6):e0098721. doi: 10.1128/mSystems.00987-21. Epub 2021 Nov 16.
4
NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus.
Microbiologyopen. 2019 Dec;8(12):e921. doi: 10.1002/mbo3.921. Epub 2019 Aug 22.
5
The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite.
Microbiol Mol Biol Rev. 2015 Dec;79(4):419-35. doi: 10.1128/MMBR.00038-15.
6
Effect of point mutations on Herbaspirillum seropedicae NifA activity.
Braz J Med Biol Res. 2015 Aug;48(8):683-90. doi: 10.1590/1414-431X20154522. Epub 2015 Jul 10.
9
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate.
J Bacteriol. 2011 Jul;193(13):3293-303. doi: 10.1128/JB.00265-11. Epub 2011 Apr 29.

本文引用的文献

3
Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum.
J Bacteriol. 2007 Oct;189(19):6861-9. doi: 10.1128/JB.00759-07. Epub 2007 Jul 20.
4
Nitrogen regulation in bacteria and archaea.
Annu Rev Microbiol. 2007;61:349-77. doi: 10.1146/annurev.micro.61.080706.093409.
6
Redirection of metabolism for biological hydrogen production.
Appl Environ Microbiol. 2007 Mar;73(5):1665-71. doi: 10.1128/AEM.02565-06. Epub 2007 Jan 12.
7
Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense.
FEBS Lett. 2006 Oct 2;580(22):5232-6. doi: 10.1016/j.febslet.2006.08.054. Epub 2006 Sep 5.
9
Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9779-84. doi: 10.1073/pnas.0602278103. Epub 2006 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验