Suppr超能文献

简约法的风险:遗传协方差矩阵降秩估计的性质

Perils of parsimony: properties of reduced-rank estimates of genetic covariance matrices.

作者信息

Meyer Karin, Kirkpatrick Mark

机构信息

University of New England, Armidale NSW 2351, Australia.

出版信息

Genetics. 2008 Oct;180(2):1153-66. doi: 10.1534/genetics.108.090159. Epub 2008 Aug 30.

Abstract

Eigenvalues and eigenvectors of covariance matrices are important statistics for multivariate problems in many applications, including quantitative genetics. Estimates of these quantities are subject to different types of bias. This article reviews and extends the existing theory on these biases, considering a balanced one-way classification and restricted maximum-likelihood estimation. Biases are due to the spread of sample roots and arise from ignoring selected principal components when imposing constraints on the parameter space, to ensure positive semidefinite estimates or to estimate covariance matrices of chosen, reduced rank. In addition, it is shown that reduced-rank estimators that consider only the leading eigenvalues and -vectors of the "between-group" covariance matrix may be biased due to selecting the wrong subset of principal components. In a genetic context, with groups representing families, this bias is inverse proportional to the degree of genetic relationship among family members, but is independent of sample size. Theoretical results are supplemented by a simulation study, demonstrating close agreement between predicted and observed bias for large samples. It is emphasized that the rank of the genetic covariance matrix should be chosen sufficiently large to accommodate all important genetic principal components, even though, paradoxically, this may require including a number of components with negligible eigenvalues. A strategy for rank selection in practical analyses is outlined.

摘要

协方差矩阵的特征值和特征向量在包括数量遗传学在内的许多应用中的多变量问题里都是重要的统计量。这些量的估计会受到不同类型偏差的影响。本文回顾并扩展了关于这些偏差的现有理论,考虑了平衡的单向分类和限制最大似然估计。偏差是由于样本根的散布导致的,并且当对参数空间施加约束以确保半正定估计或估计选定的降秩协方差矩阵时,因忽略了选定的主成分而产生。此外,研究表明,仅考虑“组间”协方差矩阵的主导特征值和特征向量的降秩估计量可能会因选择了错误的主成分子集而产生偏差。在遗传学背景下,若组代表家系,这种偏差与家庭成员间的遗传关系程度成反比,但与样本大小无关。理论结果通过模拟研究得到补充,该研究表明大样本的预测偏差和观察偏差之间高度一致。需要强调的是,遗传协方差矩阵的秩应选择得足够大,以容纳所有重要的遗传主成分,尽管自相矛盾的是,这可能需要纳入一些特征值可忽略不计的成分。本文概述了实际分析中秩选择的策略。

相似文献

1
Perils of parsimony: properties of reduced-rank estimates of genetic covariance matrices.
Genetics. 2008 Oct;180(2):1153-66. doi: 10.1534/genetics.108.090159. Epub 2008 Aug 30.
2
Performance of penalized maximum likelihood in estimation of genetic covariances matrices.
Genet Sel Evol. 2011 Nov 27;43(1):39. doi: 10.1186/1297-9686-43-39.
3
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices.
Genet Sel Evol. 2005 Jan-Feb;37(1):1-30. doi: 10.1186/1297-9686-37-1-1.
4
Better estimates of genetic covariance matrices by "bending" using penalized maximum likelihood.
Genetics. 2010 Jul;185(3):1097-110. doi: 10.1534/genetics.109.113381. Epub 2010 May 3.
5
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Genetics. 2017 Jul;206(3):1271-1284. doi: 10.1534/genetics.116.198606. Epub 2017 May 5.
6
Principal component approach in variance component estimation for international sire evaluation.
Genet Sel Evol. 2011 May 24;43(1):21. doi: 10.1186/1297-9686-43-21.
7
Parameter expansion for estimation of reduced rank covariance matrices.
Genet Sel Evol. 2008 Jan-Feb;40(1):3-24. doi: 10.1186/1297-9686-40-1-3. Epub 2007 Dec 21.
8
On Information Rank Deficiency in Phenotypic Covariance Matrices.
Syst Biol. 2022 Jun 16;71(4):810-822. doi: 10.1093/sysbio/syab088.
9
Shrinkage estimators for covariance matrices.
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.

引用本文的文献

1
Multi-task genomic prediction using gated residual variable selection neural networks.
BMC Bioinformatics. 2025 Jul 7;26(1):167. doi: 10.1186/s12859-025-06188-z.
2
Is Ockham's razor losing its edge? New perspectives on the principle of model parsimony.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2401230121. doi: 10.1073/pnas.2401230121. Epub 2025 Jan 27.
4
Using inbreeding to test the contribution of non-additive genetic effects to additive genetic variance: a case study in .
Proc Biol Sci. 2023 Mar 29;290(1995):20222111. doi: 10.1098/rspb.2022.2111. Epub 2023 Mar 15.
5
Predicting the Evolution of Sexual Dimorphism in Gene Expression.
Mol Biol Evol. 2021 May 4;38(5):1847-1859. doi: 10.1093/molbev/msaa329.
6
Bayesian factor analytic model: An approach in multiple environment trials.
PLoS One. 2019 Aug 22;14(8):e0220290. doi: 10.1371/journal.pone.0220290. eCollection 2019.
7
A Multivariate Genome-Wide Association Study of Wing Shape in .
Genetics. 2019 Apr;211(4):1429-1447. doi: 10.1534/genetics.118.301342. Epub 2019 Feb 21.
8
A note on measuring natural selection on principal component scores.
Evol Lett. 2018 Jun 21;2(4):272-280. doi: 10.1002/evl3.63. eCollection 2018 Aug.
9
Mutation predicts 40 million years of fly wing evolution.
Nature. 2017 Aug 24;548(7668):447-450. doi: 10.1038/nature23473. Epub 2017 Aug 9.
10
How many more? Sample size determination in studies of morphological integration and evolvability.
Methods Ecol Evol. 2017 May;8(5):592-603. doi: 10.1111/2041-210X.12674. Epub 2016 Nov 7.

本文引用的文献

1
A COMPARISON OF GENETIC AND PHENOTYPIC CORRELATIONS.
Evolution. 1988 Sep;42(5):958-968. doi: 10.1111/j.1558-5646.1988.tb02514.x.
2
MEASURING SELECTION AND CONSTRAINT IN THE EVOLUTION OF GROWTH.
Evolution. 1992 Aug;46(4):954-971. doi: 10.1111/j.1558-5646.1992.tb00612.x.
3
Patterns of quantitative genetic variation in multiple dimensions.
Genetica. 2009 Jun;136(2):271-84. doi: 10.1007/s10709-008-9302-6. Epub 2008 Aug 10.
4
Parameter expansion for estimation of reduced rank covariance matrices.
Genet Sel Evol. 2008 Jan-Feb;40(1):3-24. doi: 10.1186/1297-9686-40-1-3. Epub 2007 Dec 21.
5
Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation.
Genet Sel Evol. 2007 Sep-Oct;39(5):481-94. doi: 10.1186/1297-9686-39-5-481. Epub 2007 Sep 27.
6
Multivariate analyses of carcass traits for Angus cattle fitting reduced rank and factor analytic models.
J Anim Breed Genet. 2007 Apr;124(2):50-64. doi: 10.1111/j.1439-0388.2007.00637.x.
7
A tale of two matrices: multivariate approaches in evolutionary biology.
J Evol Biol. 2007 Jan;20(1):1-8. doi: 10.1111/j.1420-9101.2006.01164.x.
8
A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.
Stat Appl Genet Mol Biol. 2005;4:Article32. doi: 10.2202/1544-6115.1175. Epub 2005 Nov 14.
9
Determining the effective dimensionality of the genetic variance-covariance matrix.
Genetics. 2006 Jun;173(2):1135-44. doi: 10.1534/genetics.105.054627. Epub 2006 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验