Suppr超能文献

主成分分析法在国际种公牛评估中估计方差分量的应用。

Principal component approach in variance component estimation for international sire evaluation.

机构信息

Biotechnology and Food Research, Biometrical Genetics, MTT Agrifood Research Finland, 31600 Jokioinen, Finland.

出版信息

Genet Sel Evol. 2011 May 24;43(1):21. doi: 10.1186/1297-9686-43-21.

Abstract

BACKGROUND

The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE) for several traits and breeds in dairy cattle and provides international breeding values to its member countries. Estimating parameters for MACE is challenging since the structure of datasets and conventional use of multiple-trait models easily result in over-parameterized genetic covariance matrices. The number of parameters to be estimated can be reduced by taking into account only the leading principal components of the traits considered. For MACE, this is readily implemented in a random regression model.

METHODS

This article compares two principal component approaches to estimate variance components for MACE using real datasets. The methods tested were a REML approach that directly estimates the genetic principal components (direct PC) and the so-called bottom-up REML approach (bottom-up PC), in which traits are sequentially added to the analysis and the statistically significant genetic principal components are retained. Furthermore, this article evaluates the utility of the bottom-up PC approach to determine the appropriate rank of the (co)variance matrix.

RESULTS

Our study demonstrates the usefulness of both approaches and shows that they can be applied to large multi-country models considering all concerned countries simultaneously. These strategies can thus replace the current practice of estimating the covariance components required through a series of analyses involving selected subsets of traits. Our results support the importance of using the appropriate rank in the genetic (co)variance matrix. Using too low a rank resulted in biased parameter estimates, whereas too high a rank did not result in bias, but increased standard errors of the estimates and notably the computing time.

CONCLUSIONS

In terms of estimation's accuracy, both principal component approaches performed equally well and permitted the use of more parsimonious models through random regression MACE. The advantage of the bottom-up PC approach is that it does not need any previous knowledge on the rank. However, with a predetermined rank, the direct PC approach needs less computing time than the bottom-up PC.

摘要

背景

奶牛养殖业是一个高度全球化的行业,需要具有国际可比性和可靠性的种公牛育种值。国际公牛评估服务机构(Interbull)成立于 1983 年,旨在满足这一需求。目前,Interbull 针对奶牛的多个性状和品种开展多国联合多性状评估(MACE),并向其成员国提供国际育种值。由于数据集的结构以及多性状模型的常规使用很容易导致遗传协方差矩阵过度参数化,因此对 MACE 进行参数估计具有挑战性。通过仅考虑所考虑性状的主要主成分,可以减少要估计的参数数量。对于 MACE,可以在随机回归模型中轻松实现这一点。

方法

本文使用真实数据集比较了两种主成分方法来估计 MACE 的方差分量。测试的方法是直接估计遗传主成分的 REML 方法(直接 PC)和所谓的自下而上 REML 方法(自下而上 PC),其中性状被顺序添加到分析中,并保留具有统计学意义的遗传主成分。此外,本文还评估了自下而上 PC 方法确定(协)方差矩阵适当秩的效用。

结果

本研究证明了这两种方法的有用性,并表明它们可以应用于大型多国模型,同时考虑所有相关国家。因此,这些策略可以替代当前通过涉及选定性状子集的一系列分析来估计所需协方差分量的做法。我们的研究结果支持在遗传(协)方差矩阵中使用适当秩的重要性。使用过低的秩会导致参数估计偏倚,而使用过高的秩则不会导致偏倚,但会增加估计的标准误差,尤其是计算时间。

结论

就估计准确性而言,两种主成分方法的性能相同,并通过随机回归 MACE 允许使用更简约的模型。自下而上 PC 方法的优势在于它不需要关于秩的任何先验知识。但是,对于预定的秩,直接 PC 方法比自下而上 PC 方法需要更少的计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a724/3114711/2f3e3e6c6284/1297-9686-43-21-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验