Suppr超能文献

还需要多少?形态整合与进化能力研究中的样本量确定

How many more? Sample size determination in studies of morphological integration and evolvability.

作者信息

Grabowski Mark, Porto Arthur

机构信息

Division of Anthropology, American Museum of Natural History, New York, 10024.

Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway.

出版信息

Methods Ecol Evol. 2017 May;8(5):592-603. doi: 10.1111/2041-210X.12674. Epub 2016 Nov 7.

Abstract
  1. The variational properties of living organisms are an important component of current evolutionary theory. As a consequence, researchers working on the field of multivariate evolution have increasingly used integration and evolvability statistics as a way of capturing the potentially complex patterns of trait association and their effects over evolutionary trajectories. Little attention has been paid, however, to the cascading effects that inaccurate estimates of trait covariance have on these widely used evolutionary statistics. 2. Here, we analyze the relationship between sampling effort and inaccuracy in evolvability and integration statistics calculated from 10-trait matrices with varying patterns of covariation and magnitudes of integration. We then extrapolate our initial approach to different numbers of traits and different magnitudes of integration and estimate general equations relating the inaccuracy of the statistics of interest to sampling effort. We validate our equations using a dataset of cranial traits, and use them to make sample size recommendations. 3. Our results suggest that highly inaccurate estimates of evolvability and integration statistics resulting from small sample sizes are likely common in the literature, given the sampling effort necessary to properly estimate them. We also show that patterns of covariation have no effect on the sampling properties of these statistics, but overall magnitudes of integration interact with sample size and lead to varying degrees of bias, imprecision, and inaccuracy. 4. Finally, we provide R functions that can be used to calculate recommended sample sizes or to simply estimate the level of inaccuracy that should be expected in these statistics, given a sampling design.
摘要
  1. 生物体的变异性是当前进化理论的一个重要组成部分。因此,从事多变量进化领域研究的人员越来越多地使用整合和可进化性统计数据,以此来捕捉性状关联的潜在复杂模式及其对进化轨迹的影响。然而,性状协方差的不准确估计对这些广泛使用的进化统计数据所产生的级联效应却很少受到关注。2. 在这里,我们分析了采样量与根据具有不同协变模式和整合量的10个性状矩阵计算出的可进化性和整合统计数据中的不准确性之间的关系。然后,我们将最初的方法推广到不同数量的性状和不同的整合量,并估计出将感兴趣的统计数据的不准确性与采样量相关联的通用方程。我们使用一个颅骨性状数据集验证了我们的方程,并利用它们给出样本量建议。3. 我们的结果表明,鉴于准确估计所需的采样量,文献中因样本量小而导致的可进化性和整合统计数据的高度不准确估计可能很常见。我们还表明,协变模式对这些统计数据的采样特性没有影响,但整合的总体量与样本量相互作用,会导致不同程度的偏差、不精确性和不准确性。4. 最后,我们提供了R函数,这些函数可用于计算推荐的样本量,或者在给定采样设计的情况下,简单地估计这些统计数据中预期的不准确性水平。

相似文献

8
The mutation matrix and the evolution of evolvability.突变矩阵与进化能力的演变。
Evolution. 2007 Apr;61(4):727-45. doi: 10.1111/j.1558-5646.2007.00071.x.

本文引用的文献

1
A COMPARISON OF GENETIC AND PHENOTYPIC CORRELATIONS.遗传相关性与表型相关性的比较
Evolution. 1988 Sep;42(5):958-968. doi: 10.1111/j.1558-5646.1988.tb02514.x.
4
THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS.对相关性状选择的度量
Evolution. 1983 Nov;37(6):1210-1226. doi: 10.1111/j.1558-5646.1983.tb00236.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验