Neuroscience Research Australia, Barker Street, Randwick 2031, Australia.
Anal Chem. 2012 Jan 17;84(2):1083-91. doi: 10.1021/ac202720f. Epub 2011 Dec 27.
The high level of complexity in nuclear magnetic resonance (NMR) metabolic spectroscopic data sets has fueled the development of experimental and mathematical techniques that enhance latent biomarker recovery and improve model interpretability. We previously showed that statistical total correlation spectroscopy (STOCSY) can be used to edit NMR spectra to remove drug metabolite signatures that obscure metabolic variation of diagnostic interest. Here, we extend this "STOCSY editing" concept to a generalized scaling procedure for NMR data that enhances recovery of latent biochemical information and improves biological classification and interpretation. We call this new procedure STOCSY-scaling (STOCSY(S)). STOCSY(S) exploits the fixed proportionality in a set of NMR spectra between resonances from the same molecule to suppress or enhance features correlated with a resonance of interest. We demonstrate this new approach using two exemplar data sets: (a) a streptozotocin rat model (n = 30) of type 1 diabetes and (b) a human epidemiological study utilizing plasma NMR spectra of patients with metabolic syndrome (n = 67). In both cases significant biomarker discovery improvement was observed by using STOCSY(S): the approach successfully suppressed interfering NMR signals from glucose and lactate that otherwise dominate the variation in the streptozotocin study, which then allowed recovery of biomarkers such as glycine, which were otherwise obscured. In the metabolic syndrome study, we used STOCSY(S) to enhance variation from the high-density lipoprotein cholesterol peak, improving the prediction of individuals with metabolic syndrome from controls in orthogonal projections to latent structures discriminant analysis models and facilitating the biological interpretation of the results. Thus, STOCSY(S) is a versatile technique that is applicable in any situation in which variation, either biological or otherwise, dominates a data set at the expense of more interesting or important features. This approach is generally appropriate for many types of NMR-based complex mixture analyses and hence for wider applications in bioanalytical science.
核磁共振(NMR)代谢波谱数据集的高度复杂性促使人们开发了实验和数学技术,以增强潜在生物标志物的恢复能力并提高模型的可解释性。我们之前曾展示过,统计全相关谱(STOCSY)可用于编辑 NMR 谱以去除掩盖诊断相关代谢变化的药物代谢物特征。在这里,我们将这种“STOCSY 编辑”概念扩展到一种用于 NMR 数据的广义缩放程序,该程序可增强潜在生化信息的恢复能力,并改善生物分类和解释。我们将这种新方法称为 STOCSY 缩放(STOCSY(S))。STOCSY(S)利用一组 NMR 谱中同一分子的共振之间的固定比例关系来抑制或增强与感兴趣的共振相关的特征。我们使用两个范例数据集演示了这种新方法:(a)1 型糖尿病的链脲佐菌素大鼠模型(n = 30);(b)利用代谢综合征患者的血浆 NMR 谱进行的人类流行病学研究(n = 67)。在这两种情况下,通过使用 STOCSY(S)都观察到了显著的生物标志物发现改善:该方法成功地抑制了来自葡萄糖和乳酸的干扰 NMR 信号,否则这些信号会主导链脲佐菌素研究中的变化,从而恢复了甘氨酸等被掩盖的生物标志物。在代谢综合征研究中,我们使用 STOCSY(S)来增强高密度脂蛋白胆固醇峰的变化,从而改善了正交投影到潜在结构判别分析模型中代谢综合征个体与对照个体的预测,并促进了结果的生物学解释。因此,STOCSY(S)是一种通用技术,适用于任何情况下,无论生物变化还是其他变化,都以牺牲更有趣或更重要的特征为代价主导数据集。这种方法通常适用于许多类型的基于 NMR 的复杂混合物分析,因此在生物分析科学中有更广泛的应用。