Suppr超能文献

在单一试验环境中使用半竞争风险范式评估代孕情况。

On assessing surrogacy in a single trial setting using a semicompeting risks paradigm.

作者信息

Ghosh Debashis

机构信息

Departments of Statistics and Public Health Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biometrics. 2009 Jun;65(2):521-9. doi: 10.1111/j.1541-0420.2008.01109.x.

Abstract

There has been a recent emphasis on the identification of biomarkers and other biologic measures that may be potentially used as surrogate endpoints in clinical trials. We focus on the setting of data from a single clinical trial. In this article, we consider a framework in which the surrogate must occur before the true endpoint. This suggests viewing the surrogate and true endpoints as semicompeting risks data; this approach is new to the literature on surrogate endpoints and leads to an asymmetrical treatment of the surrogate and true endpoints. However, such a data structure also conceptually complicates many of the previously considered measures of surrogacy in the literature. We propose novel estimation and inferential procedures for the relative effect and adjusted association quantities proposed by Buyse and Molenberghs (1998, Biometrics 54, 1014-1029). The proposed methodology is illustrated with application to simulated data, as well as to data from a leukemia study.

摘要

最近人们一直强调识别生物标志物和其他生物学指标,这些指标可能在临床试验中用作替代终点。我们专注于单个临床试验的数据设置。在本文中,我们考虑一个框架,其中替代指标必须在真正的终点之前出现。这意味着将替代指标和真正的终点视为半竞争风险数据;这种方法在替代终点的文献中是新的,并导致对替代指标和真正终点的不对称处理。然而,这样的数据结构在概念上也使文献中许多先前考虑的替代指标测量变得复杂。我们针对Buyse和Molenberghs(1998年,《生物统计学》54卷,1014 - 1029页)提出的相对效应和调整关联量,提出了新颖的估计和推断程序。所提出的方法通过应用于模拟数据以及白血病研究的数据进行了说明。

相似文献

1
On assessing surrogacy in a single trial setting using a semicompeting risks paradigm.
Biometrics. 2009 Jun;65(2):521-9. doi: 10.1111/j.1541-0420.2008.01109.x.
2
Meta-analysis for surrogacy: accelerated failure time models and semicompeting risks modeling.
Biometrics. 2012 Mar;68(1):226-32. doi: 10.1111/j.1541-0420.2011.01633.x. Epub 2011 Jun 13.
3
Related causal frameworks for surrogate outcomes.
Biometrics. 2009 Jun;65(2):530-8. doi: 10.1111/j.1541-0420.2008.01106.x.
4
Exact confidence bounds following adaptive group sequential tests.
Biometrics. 2009 Jun;65(2):539-46. doi: 10.1111/j.1541-0420.2008.01101.x.
5
On comparison of mixture models for closed population capture-recapture studies.
Biometrics. 2009 Jun;65(2):547-53. doi: 10.1111/j.1541-0420.2008.01065.x. Epub 2008 May 28.
6
Semiparametric transformation models for semicompeting survival data.
Biometrics. 2014 Sep;70(3):599-607. doi: 10.1111/biom.12178. Epub 2014 Apr 21.
7
Inference for clustered inhomogeneous spatial point processes.
Biometrics. 2009 Jun;65(2):423-30. doi: 10.1111/j.1541-0420.2008.01070.x. Epub 2008 May 18.
8
Semiparametric inference for surrogate endpoints with bivariate censored data.
Biometrics. 2008 Mar;64(1):149-56. doi: 10.1111/j.1541-0420.2007.00834.x. Epub 2007 Jul 25.
9
Marginal hazards regression for retrospective studies within cohort with possibly correlated failure time data.
Biometrics. 2009 Jun;65(2):405-14. doi: 10.1111/j.1541-0420.2008.01077.x. Epub 2008 May 19.
10
Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models.
Biometrics. 2009 Jun;65(2):353-60. doi: 10.1111/j.1541-0420.2008.01069.x. Epub 2008 May 11.

引用本文的文献

1
Surrogate Marker Evaluation: A Tutorial Using R.
Stat Med. 2025 May;44(10-12):e70048. doi: 10.1002/sim.70048.
2
Pathway for Development and Validation of Multi-domain Endpoints for Amyloid Light Chain (AL) Amyloidosis.
Ther Innov Regul Sci. 2024 Jul;58(4):600-609. doi: 10.1007/s43441-024-00641-6. Epub 2024 Apr 17.
3
Model-free approach to quantifying the proportion of treatment effect explained by a surrogate marker.
Biometrika. 2020 Mar;107(1):107-122. doi: 10.1093/biomet/asz065. Epub 2019 Dec 24.
4
Assessing the value of a censored surrogate outcome.
Lifetime Data Anal. 2020 Apr;26(2):245-265. doi: 10.1007/s10985-019-09473-1. Epub 2019 Apr 12.
5
A modified risk set approach to biomarker evaluation studies.
Stat Biosci. 2016 Oct;8(2):395-406. doi: 10.1007/s12561-016-9166-8. Epub 2016 Aug 22.
6
Evaluating surrogate marker information using censored data.
Stat Med. 2017 May 20;36(11):1767-1782. doi: 10.1002/sim.7220. Epub 2017 Jan 15.
7
Marginal and Conditional Distribution Estimation from Double-Sampled Semi-Competing Risks Data.
Scand Stat Theory Appl. 2015 Mar 1;42(1):87-103. doi: 10.1111/sjos.12096.
8
Bayesian approach for flexible modeling of semicompeting risks data.
Stat Med. 2014 Dec 20;33(29):5111-25. doi: 10.1002/sim.6313. Epub 2014 Oct 2.
10
A causal framework for surrogate endpoints with semi-competing risks data.
Stat Probab Lett. 2012 Oct;82(11):1898-1902. doi: 10.1016/j.spl.2012.06.010. Epub 2012 Jun 16.

本文引用的文献

1
Semiparametric inference for surrogate endpoints with bivariate censored data.
Biometrics. 2008 Mar;64(1):149-56. doi: 10.1111/j.1541-0420.2007.00834.x. Epub 2007 Jul 25.
2
Counterfactual links to the proportion of treatment effect explained by a surrogate marker.
Biometrics. 2005 Dec;61(4):1102-11. doi: 10.1111/j.1541-0420.2005.00380.x.
4
Semi-parametric inferences for association with semi-competing risks data.
Stat Med. 2006 Jun 30;25(12):2059-70. doi: 10.1002/sim.2327.
5
Does the Prentice criterion validate surrogate endpoints?
Stat Med. 2004 May 30;23(10):1571-8. doi: 10.1002/sim.1780.
6
The validation of surrogate endpoints in meta-analyses of randomized experiments.
Biostatistics. 2000 Mar;1(1):49-67. doi: 10.1093/biostatistics/1.1.49.
7
On meta-analytic assessment of surrogate outcomes.
Biostatistics. 2000 Sep;1(3):231-46. doi: 10.1093/biostatistics/1.3.231.
8
Statistical challenges in the evaluation of surrogate endpoints in randomized trials.
Control Clin Trials. 2002 Dec;23(6):607-25. doi: 10.1016/s0197-2456(02)00236-2.
9
A measure of the proportion of treatment effect explained by a surrogate marker.
Biometrics. 2002 Dec;58(4):803-12. doi: 10.1111/j.0006-341x.2002.00803.x.
10
Principal stratification in causal inference.
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验