Suppr超能文献

具有双变量删失数据的替代终点的半参数推断

Semiparametric inference for surrogate endpoints with bivariate censored data.

作者信息

Ghosh Debashis

机构信息

Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48105, USA.

出版信息

Biometrics. 2008 Mar;64(1):149-56. doi: 10.1111/j.1541-0420.2007.00834.x. Epub 2007 Jul 25.

Abstract

Considerable attention has been recently paid to the use of surrogate endpoints in clinical research. We deal with the situation where the two endpoints are both right censored. While proportional hazards analyses are typically used for this setting, their use leads to several complications. In this article, we propose the use of the accelerated failure time model for analysis of surrogate endpoints. Based on the model, we then describe estimation and inference procedures for several measures of surrogacy. A complication is that potentially both the independent and dependent variable are subject to censoring. We adapt the Theil-Sen estimator to this problem, develop the associated asymptotic results, and propose a novel resampling-based technique for calculating the variances of the proposed estimators. The finite-sample properties of the estimation methodology are assessed using simulation studies, and the proposed procedures are applied to data from an acute myelogenous leukemia clinical trial.

摘要

近年来,临床研究中替代终点的使用受到了相当多的关注。我们处理的情况是两个终点都存在右删失。虽然比例风险分析通常用于这种情况,但使用它们会导致一些复杂问题。在本文中,我们建议使用加速失效时间模型来分析替代终点。基于该模型,我们随后描述了几种替代指标的估计和推断程序。一个复杂之处在于,自变量和因变量都可能受到删失。我们将泰尔-森估计器应用于这个问题,推导相关的渐近结果,并提出一种基于重采样的新颖技术来计算所提估计器的方差。使用模拟研究评估了估计方法的有限样本性质,并将所提程序应用于一项急性髓性白血病临床试验的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验