Suppr超能文献

一种无模型方法,用于量化替代标志物所解释的治疗效果比例。

Model-free approach to quantifying the proportion of treatment effect explained by a surrogate marker.

作者信息

Wang Xuan, Parast Layla, Tian L U, Cai Tianxi

机构信息

School of Mathematical Sciences, Zhejiang University, 866Yuhangtang Rd., Hangzhou 310027, Zhejiang, China.

Statistics Group, RAND Corporation, 1776 Main Street, Santa Monica, California 90401, U.S.A.

出版信息

Biometrika. 2020 Mar;107(1):107-122. doi: 10.1093/biomet/asz065. Epub 2019 Dec 24.

Abstract

In randomized clinical trials, the primary outcome, , often requires long-term follow-up and/or is costly to measure. For such settings, it is desirable to use a surrogate marker, , to infer the treatment effect on , Δ. Identifying such an and quantifying the proportion of treatment effect on explained by the effect on are thus of great importance. Most existing methods for quantifying the proportion of treatment effect are model based and may yield biased estimates under model misspecification. Recently proposed nonparametric methods require strong assumptions to ensure that the proportion of treatment effect is in the range [0, 1]. Additionally, optimal use of to approximate Δ is especially important when relates to nonlinearly. In this paper we identify an optimal transformation of , (·), such that the proportion of treatment effect explained can be inferred based on (). In addition, we provide two novel model-free definitions of proportion of treatment effect explained and simple conditions for ensuring that it lies within [0, 1]. We provide nonparametric estimation procedures and establish asymptotic properties of the proposed estimators. Simulation studies demonstrate that the proposed methods perform well in finite samples. We illustrate the proposed procedures using a randomized study of HIV patients.

摘要

在随机临床试验中,主要结局指标 通常需要长期随访且/或测量成本高昂。对于此类情况,使用替代标志物 来推断治疗对 的效应 Δ 是很有必要的。因此,识别这样的 并量化治疗对 的效应中由对 的效应所解释的比例非常重要。大多数现有的量化治疗效应比例的方法都是基于模型的,在模型设定错误的情况下可能会产生有偏差的估计。最近提出的非参数方法需要很强的假设来确保治疗效应比例在[0, 1]范围内。此外,当 与 呈非线性关系时,最优地使用 来近似 Δ 尤为重要。在本文中,我们确定了 的一种最优变换 (·),使得可以基于 () 推断出所解释的治疗效应比例。此外,我们给出了两种关于所解释的治疗效应比例的新颖的无模型定义以及确保其在[0, 1]范围内的简单条件。我们提供了非参数估计程序,并建立了所提出估计量的渐近性质。模拟研究表明,所提出的方法在有限样本中表现良好。我们使用一项针对HIV患者的随机研究来说明所提出的程序。

相似文献

7
Testing for heterogeneity in the utility of a surrogate marker.检测替代标志物效用的异质性。
Biometrics. 2023 Jun;79(2):799-810. doi: 10.1111/biom.13600. Epub 2021 Dec 7.
8
Evaluation of longitudinal surrogate markers.纵向替代标志物的评估。
Biometrics. 2021 Jun;77(2):477-489. doi: 10.1111/biom.13310. Epub 2020 Jun 22.

引用本文的文献

3
Robust evaluation of longitudinal surrogate markers with censored data.对带有删失数据的纵向替代标志物进行稳健评估。
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.
6
Assessing heterogeneity in surrogacy using censored data.使用删失数据评估代孕中的异质性。
Stat Med. 2024 Jul 30;43(17):3184-3209. doi: 10.1002/sim.10122. Epub 2024 May 29.
8
Statistical Methods to Evaluate Surrogate Markers.评估替代标志物的统计方法。
Med Care. 2024 Feb 1;62(2):102-108. doi: 10.1097/MLR.0000000000001956. Epub 2023 Dec 11.

本文引用的文献

1
Estimation of the optimal surrogate based on a randomized trial.基于随机试验的最佳替代指标估计。
Biometrics. 2018 Dec;74(4):1271-1281. doi: 10.1111/biom.12879. Epub 2018 Apr 27.
3
Surrogacy assessment using principal stratification and a Gaussian copula model.使用主分层和高斯Copula模型进行代孕评估。
Stat Methods Med Res. 2017 Feb;26(1):88-107. doi: 10.1177/0962280214539655. Epub 2016 Jul 11.
4
Comparing biomarkers as principal surrogate endpoints.比较生物标志物作为主要替代终点。
Biometrics. 2011 Dec;67(4):1442-51. doi: 10.1111/j.1541-0420.2011.01603.x. Epub 2011 Apr 22.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验