Suppr超能文献

贝叶斯伯努利-指数联合模型用于二元纵向结局和信息时间,应用于膀胱癌复发数据。

A Bayesian Bernoulli-Exponential joint model for binary longitudinal outcomes and informative time with applications to bladder cancer recurrence data.

机构信息

Pfizer Research & Development, PSSM Data Sciences, 445 Eastern Point Rd, Groton, Connecticut, USA.

Department of Applied Statistics and Research Methods at the University of Northern Colorado, Greeley, Colorado, USA.

出版信息

BMC Med Res Methodol. 2024 Mar 1;24(1):54. doi: 10.1186/s12874-024-02160-2.

Abstract

BACKGROUND

A variety of methods exist for the analysis of longitudinal data, many of which are characterized with the assumption of fixed visit time points for study individuals. This, however is not always a tenable assumption. Phenomenon that alter subject visit patterns such as adverse events due to investigative treatment administered, travel or any other emergencies may result in unbalanced data and varying individual visit time points. Visit times can be considered informative, because subsequent or current subject outcomes can change or be adapted due to previous subject outcomes.

METHODS

In this paper, a Bayesian Bernoulli-Exponential model for analyzing joint binary outcomes and exponentially distributed informative visit times is developed. Via statistical simulations, the influence of controlled variations in visit patterns, prior and sample size schemes on model performance is assessed. As an application example, the proposed model is applied to a Bladder Cancer Recurrence data.

RESULTS AND CONCLUSIONS

Results from the simulation analysis indicated that the Bayesian Bernoulli-Exponential joint model converged in stationarity, and performed relatively better for small to medium sample size scenarios with less varying time sequences regardless of the choice of prior. In larger samples, the model performed better for less varying time sequences. This model's application to the bladder cancer data showed a statistically significant effect of prior tumor recurrence on the probability of subsequent recurrences.

摘要

背景

有多种方法可用于分析纵向数据,其中许多方法的特点是假设研究个体的访问时间点是固定的。然而,这并不总是一个可行的假设。由于给予的治疗、旅行或任何其他紧急情况等原因而改变受试者访问模式的现象,可能导致数据不平衡和个体访问时间点的变化。访问时间可以被认为是有信息的,因为后续或当前的受试者结果可能会由于先前的受试者结果而发生变化或调整。

方法

本文提出了一种用于分析联合二分类结果和指数分布有信息访问时间的贝叶斯伯努利-指数模型。通过统计模拟,评估了访问模式、先验和样本大小方案的受控变化对模型性能的影响。作为一个应用实例,将所提出的模型应用于膀胱癌复发数据。

结果与结论

模拟分析的结果表明,贝叶斯伯努利-指数联合模型在稳定性方面收敛,并且对于小至中等样本量的情况,无论先验的选择如何,表现相对较好,而时间序列变化较少。在较大的样本中,该模型对于时间序列变化较少的情况表现更好。该模型在膀胱癌数据中的应用表明,先前的肿瘤复发对后续复发的概率有统计学显著影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验