Kaiser Mark S, Caragea Petruţa C
Statistical Laboratory and Department of Statistics, Iowa State University of Science and Technology, Ames, Iowa 50011-1210, USA.
Biometrics. 2009 Sep;65(3):857-65. doi: 10.1111/j.1541-0420.2008.01118.x. Epub 2008 Aug 28.
The application of Markov random field models to problems involving spatial data on lattice systems requires decisions regarding a number of important aspects of model structure. Existing exploratory techniques appropriate for spatial data do not provide direct guidance to an investigator about these decisions. We introduce an exploratory quantity that is directly tied to the structure of Markov random field models based on one-parameter exponential family conditional distributions. This exploratory diagnostic is shown to be a meaningful statistic that can inform decisions involved in modeling spatial structure with statistical dependence terms. In this article, we develop the diagnostic, illustrate its use in guiding modeling decisions with simulated examples, and reexamine a previously published application.
将马尔可夫随机场模型应用于涉及晶格系统空间数据的问题时,需要就模型结构的许多重要方面做出决策。适用于空间数据的现有探索技术并未就这些决策为研究者提供直接指导。我们引入了一个探索量,它基于单参数指数族条件分布,与马尔可夫随机场模型的结构直接相关。结果表明,这种探索性诊断是一个有意义的统计量,能够为涉及用统计相关项对空间结构进行建模的决策提供参考。在本文中,我们开发了这种诊断方法,通过模拟示例说明其在指导建模决策中的应用,并重新审视了之前发表的一项应用。