Suppr超能文献

基因芯片微阵列的“Hook”校准:理论与算法

"Hook"-calibration of GeneChip-microarrays: theory and algorithm.

作者信息

Binder Hans, Preibisch Stephan

机构信息

Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany.

出版信息

Algorithms Mol Biol. 2008 Aug 29;3:12. doi: 10.1186/1748-7188-3-12.

Abstract

BACKGROUND

: The improvement of microarray calibration methods is an essential prerequisite for quantitative expression analysis. This issue requires the formulation of an appropriate model describing the basic relationship between the probe intensity and the specific transcript concentration in a complex environment of competing interactions, the estimation of the magnitude these effects and their correction using the intensity information of a given chip and, finally the development of practicable algorithms which judge the quality of a particular hybridization and estimate the expression degree from the intensity values.

RESULTS

: We present the so-called hook-calibration method which co-processes the log-difference (delta) and -sum (sigma) of the perfect match (PM) and mismatch (MM) probe-intensities. The MM probes are utilized as an internal reference which is subjected to the same hybridization law as the PM, however with modified characteristics. After sequence-specific affinity correction the method fits the Langmuir-adsorption model to the smoothed delta-versus-sigma plot. The geometrical dimensions of this so-called hook-curve characterize the particular hybridization in terms of simple geometric parameters which provide information about the mean non-specific background intensity, the saturation value, the mean PM/MM-sensitivity gain and the fraction of absent probes. This graphical summary spans a metrics system for expression estimates in natural units such as the mean binding constants and the occupancy of the probe spots. The method is single-chip based, i.e. it separately uses the intensities for each selected chip.

CONCLUSION

: The hook-method corrects the raw intensities for the non-specific background hybridization in a sequence-specific manner, for the potential saturation of the probe-spots with bound transcripts and for the sequence-specific binding of specific transcripts. The obtained chip characteristics in combination with the sensitivity corrected probe-intensity values provide expression estimates scaled in natural units which are given by the binding constants of the particular hybridization.

摘要

背景

微阵列校准方法的改进是定量表达分析的必要前提。这个问题需要制定一个合适的模型,来描述在竞争相互作用的复杂环境中探针强度与特定转录本浓度之间的基本关系,估计这些影响的大小,并利用给定芯片的强度信息进行校正,最后开发可行的算法来判断特定杂交的质量,并根据强度值估计表达程度。

结果

我们提出了所谓的钩状校准方法,该方法同时处理完全匹配(PM)和错配(MM)探针强度的对数差(delta)和对数和(sigma)。MM探针用作内部参考,它与PM遵循相同的杂交规律,但具有不同的特性。经过序列特异性亲和力校正后,该方法将朗缪尔吸附模型拟合到平滑的delta对sigma图上。这个所谓的钩状曲线的几何尺寸通过简单的几何参数来表征特定的杂交,这些参数提供了关于平均非特异性背景强度、饱和值、平均PM/MM灵敏度增益和缺失探针比例的信息。这种图形化总结跨越了一个以自然单位(如平均结合常数和探针点占有率)进行表达估计的度量系统。该方法基于单芯片,即它分别使用每个选定芯片的强度。

结论

钩状方法以序列特异性方式校正非特异性背景杂交的原始强度、探针点与结合转录本的潜在饱和以及特定转录本的序列特异性结合。获得的芯片特性与灵敏度校正后的探针强度值相结合,提供了以自然单位缩放的表达估计值,这些值由特定杂交的结合常数给出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddee/2546411/2081a2b09c65/1748-7188-3-12-1.jpg

相似文献

1
"Hook"-calibration of GeneChip-microarrays: theory and algorithm.
Algorithms Mol Biol. 2008 Aug 29;3:12. doi: 10.1186/1748-7188-3-12.
2
"Hook"-calibration of GeneChip-microarrays: chip characteristics and expression measures.
Algorithms Mol Biol. 2008 Aug 29;3:11. doi: 10.1186/1748-7188-3-11.
4
Washing scaling of GeneChip microarray expression.
BMC Bioinformatics. 2010 May 28;11:291. doi: 10.1186/1471-2105-11-291.
5
Estimating RNA-quality using GeneChip microarrays.
BMC Genomics. 2012 May 14;13:186. doi: 10.1186/1471-2164-13-186.
6
G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration.
BMC Bioinformatics. 2010 Apr 27;11:207. doi: 10.1186/1471-2105-11-207.
7
Calibration of microarray gene-expression data.
Methods Mol Biol. 2010;576:375-407. doi: 10.1007/978-1-59745-545-9_20.
8
Specific and nonspecific hybridization of oligonucleotide probes on microarrays.
Biophys J. 2005 Jul;89(1):337-52. doi: 10.1529/biophysj.104.055343. Epub 2005 Apr 15.
9
Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips.
Bioinformatics. 2007 Aug 15;23(16):2088-95. doi: 10.1093/bioinformatics/btm306. Epub 2007 Jun 6.

引用本文的文献

1
Model-Based Clustering With Data Correction For Removing Artifacts In Gene Expression Data.
Ann Appl Stat. 2016 Feb;11(4):1998-2026. doi: 10.1214/17-AOAS1051. Epub 2017 Dec 28.
2
Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.
PLoS One. 2018 Jun 21;13(6):e0199162. doi: 10.1371/journal.pone.0199162. eCollection 2018.
3
Variation of RNA Quality and Quantity Are Major Sources of Batch Effects in Microarray Expression Data.
Microarrays (Basel). 2014 Dec 16;3(4):322-39. doi: 10.3390/microarrays3040322.
5
Physico-chemical foundations underpinning microarray and next-generation sequencing experiments.
Nucleic Acids Res. 2013 Mar 1;41(5):2779-96. doi: 10.1093/nar/gks1358. Epub 2013 Jan 9.
8
Motif effects in Affymetrix GeneChips seriously affect probe intensities.
Nucleic Acids Res. 2012 Oct;40(19):9705-16. doi: 10.1093/nar/gks717. Epub 2012 Aug 16.
9
Estimating RNA-quality using GeneChip microarrays.
BMC Genomics. 2012 May 14;13:186. doi: 10.1186/1471-2164-13-186.
10
From hybridization theory to microarray data analysis: performance evaluation.
BMC Bioinformatics. 2011 Dec 2;12:464. doi: 10.1186/1471-2105-12-464.

本文引用的文献

1
"Hook"-calibration of GeneChip-microarrays: chip characteristics and expression measures.
Algorithms Mol Biol. 2008 Aug 29;3:11. doi: 10.1186/1748-7188-3-11.
2
Physical-chemistry-based analysis of affymetrix microarray data.
J Phys Chem B. 2006 Nov 16;110(45):22786-95. doi: 10.1021/jp062889x.
3
Relationship between gene expression and observed intensities in DNA microarrays--a modeling study.
Nucleic Acids Res. 2006 May 24;34(9):e70. doi: 10.1093/nar/gkl122.
4
Statistical analysis of adsorption models for oligonucleotide microarrays.
Stat Appl Genet Mol Biol. 2004;3:Article35. doi: 10.2202/1544-6115.1095. Epub 2004 Dec 9.
5
Signal deconvolution based expression-detection and background adjustment for microarray data.
J Comput Biol. 2006 Jan-Feb;13(1):63-80. doi: 10.1089/cmb.2006.13.63.
7
Stochastic models inspired by hybridization theory for short oligonucleotide arrays.
J Comput Biol. 2005 Jul-Aug;12(6):882-93. doi: 10.1089/cmb.2005.12.882.
8
Specific and nonspecific hybridization of oligonucleotide probes on microarrays.
Biophys J. 2005 Jul;89(1):337-52. doi: 10.1529/biophysj.104.055343. Epub 2005 Apr 15.
9
Can Zipf's law be adapted to normalize microarrays?
BMC Bioinformatics. 2005 Feb 23;6:37. doi: 10.1186/1471-2105-6-37.
10
Sensitivity, specificity, and the hybridization isotherms of DNA chips.
Biophys J. 2004 Feb;86(2):718-30. doi: 10.1016/S0006-3495(04)74150-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验