González M, Böer U, Dickel C, Quentin T, Cierny I, Oetjen E, Knepel W
Molecular Pharmacology, University of Göttingen, Robert-Koch Str. 40, 37099, Göttingen, Germany.
Diabetologia. 2008 Nov;51(11):2012-21. doi: 10.1007/s00125-008-1134-5. Epub 2008 Sep 2.
AIMS/HYPOTHESIS: Diabetes mellitus type 2 is characterised by hyperglucagonaemia, resulting in hepatic glucose production and hyperglycaemia. Considering that insulin inhibits glucagon secretion and gene transcription, hyperglucagonaemia in the face of hyperinsulinaemia in diabetes mellitus type 2 suggests that there is insulin resistance also at the glucagon-producing pancreatic islet alpha cells. However, the molecular mechanism of alpha cell insulin resistance is unknown. Therefore, the effect of molecules implicated in conferring insulin resistance in some other tissues was investigated on insulin-induced inhibition of glucagon gene transcription in alpha cells.
Reporter gene assays and biochemical techniques were used in the glucagon-producing hamster pancreatic islet alpha cell line InR1-G9.
From among 16 agents tested, chronic insulin treatment was found to abolish insulin-induced inhibition of glucagon gene transcription. Overproduction of constitutively active protein kinase B (PKB) still inhibited glucagon gene transcription after chronic insulin treatment; together with a markedly reduced insulin-induced phosphorylation and, thus, activation of PKB, this indicates that targets upstream of PKB within the insulin signalling pathway are affected. Indeed, chronic insulin treatment markedly reduced IRS-1 phosphorylation, insulin receptor (IR) autophosphorylation and IR content. Cycloheximide and in vivo labelling experiments attributed IR downregulation to enhanced degradation.
CONCLUSIONS/INTERPRETATION: These results show that an extended exposure of alpha cells to insulin induces IR downregulation and loss of insulin-induced inhibition of glucagon gene transcription. They suggest that hyperinsulinaemia, through IR downregulation, may confer insulin resistance to pancreatic islet alpha cells in diabetes mellitus type 2.
目的/假设:2型糖尿病的特征是高胰高血糖素血症,导致肝脏葡萄糖生成和高血糖。鉴于胰岛素可抑制胰高血糖素分泌和基因转录,2型糖尿病患者在高胰岛素血症情况下出现的高胰高血糖素血症提示,在产生胰高血糖素的胰岛α细胞中也存在胰岛素抵抗。然而,α细胞胰岛素抵抗的分子机制尚不清楚。因此,研究了在其他一些组织中与胰岛素抵抗相关的分子对α细胞中胰岛素诱导的胰高血糖素基因转录抑制的影响。
在产生胰高血糖素的仓鼠胰岛α细胞系InR1-G9中使用报告基因测定法和生化技术。
在测试的16种试剂中,发现慢性胰岛素处理可消除胰岛素诱导的胰高血糖素基因转录抑制。组成型活性蛋白激酶B(PKB)的过量表达在慢性胰岛素处理后仍可抑制胰高血糖素基因转录;这与胰岛素诱导的PKB磷酸化及激活明显减少一起,表明胰岛素信号通路中PKB上游的靶点受到影响。实际上,慢性胰岛素处理显著降低了IRS-1磷酸化、胰岛素受体(IR)自身磷酸化及IR含量。放线菌酮和体内标记实验将IR下调归因于降解增强。
结论/解读:这些结果表明,α细胞长期暴露于胰岛素会导致IR下调,并丧失胰岛素诱导的胰高血糖素基因转录抑制作用。它们提示,高胰岛素血症可能通过IR下调,使2型糖尿病患者的胰岛α细胞产生胰岛素抵抗。