Suppr超能文献

库尔贝克-莱布勒马尔可夫链蒙特卡罗法——一种用于有限混合分析的新算法及其在基因表达数据中的应用

Kullback-Leibler Markov chain Monte Carlo--a new algorithm for finite mixture analysis and its application to gene expression data.

作者信息

Tatarinova Tatiana, Bouck John, Schumitzky Alan

机构信息

Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045, USA.

出版信息

J Bioinform Comput Biol. 2008 Aug;6(4):727-46. doi: 10.1142/s0219720008003710.

Abstract

In this paper, we study Bayesian analysis of nonlinear hierarchical mixture models with a finite but unknown number of components. Our approach is based on Markov chain Monte Carlo (MCMC) methods. One of the applications of our method is directed to the clustering problem in gene expression analysis. From a mathematical and statistical point of view, we discuss the following topics: theoretical and practical convergence problems of the MCMC method; determination of the number of components in the mixture; and computational problems associated with likelihood calculations. In the existing literature, these problems have mainly been addressed in the linear case. One of the main contributions of this paper is developing a method for the nonlinear case. Our approach is based on a combination of methods including Gibbs sampling, random permutation sampling, birth-death MCMC, and Kullback-Leibler distance.

摘要

在本文中,我们研究具有有限但未知数量成分的非线性分层混合模型的贝叶斯分析。我们的方法基于马尔可夫链蒙特卡罗(MCMC)方法。我们方法的应用之一针对基因表达分析中的聚类问题。从数学和统计学角度,我们讨论以下主题:MCMC方法的理论和实际收敛问题;混合模型中成分数量的确定;以及与似然计算相关的计算问题。在现有文献中,这些问题主要是在线性情况下解决的。本文的主要贡献之一是为非线性情况开发了一种方法。我们的方法基于包括吉布斯采样、随机排列采样、生死MCMC和库尔贝克-莱布勒距离等方法的组合。

相似文献

2
Sequential Gibbs Sampling Algorithm for Cognitive Diagnosis Models with Many Attributes.
Multivariate Behav Res. 2022 Sep-Oct;57(5):840-858. doi: 10.1080/00273171.2021.1896352. Epub 2021 Mar 23.
3
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110541. doi: 10.1098/rsta.2011.0541. Print 2013 Feb 13.
5
Metropolis sampling in pedigree analysis.
Stat Methods Med Res. 1993;2(3):263-82. doi: 10.1177/096228029300200305.
6
Markov chain Monte Carlo methods in biostatistics.
Stat Methods Med Res. 1996 Dec;5(4):339-55. doi: 10.1177/096228029600500402.
7
Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference.
Genes Genomics. 2019 May;41(5):547-555. doi: 10.1007/s13258-019-00789-8. Epub 2019 Feb 11.
8
A comparison of computational algorithms for the Bayesian analysis of clinical trials.
Clin Trials. 2024 Dec;21(6):689-700. doi: 10.1177/17407745241247334. Epub 2024 May 16.
9
Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.
Heredity (Edinb). 2012 Oct;109(4):235-45. doi: 10.1038/hdy.2012.35. Epub 2012 Jul 18.
10
Phylogenetic MCMC algorithms are misleading on mixtures of trees.
Science. 2005 Sep 30;309(5744):2207-9. doi: 10.1126/science.1115493.

引用本文的文献

1
Mitochondrial DNA haplogroup, genetic ancestry, and susceptibility to Ewing sarcoma.
Mitochondrion. 2022 Nov;67:6-14. doi: 10.1016/j.mito.2022.09.002. Epub 2022 Sep 15.
2
Local ancestry prediction with .
PeerJ. 2021 Dec 14;9:e12502. doi: 10.7717/peerj.12502. eCollection 2021.
3
Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian.
J Pharmacokinet Pharmacodyn. 2013 Apr;40(2):189-99. doi: 10.1007/s10928-013-9302-8. Epub 2013 Feb 13.

本文引用的文献

1
Evaluation and comparison of gene clustering methods in microarray analysis.
Bioinformatics. 2006 Oct 1;22(19):2405-12. doi: 10.1093/bioinformatics/btl406. Epub 2006 Jul 31.
2
Tight clustering: a resampling-based approach for identifying stable and tight patterns in data.
Biometrics. 2005 Mar;61(1):10-6. doi: 10.1111/j.0006-341X.2005.031032.x.
3
Bayesian mixture model based clustering of replicated microarray data.
Bioinformatics. 2004 May 22;20(8):1222-32. doi: 10.1093/bioinformatics/bth068. Epub 2004 Feb 10.
4
Bayesian analysis of population PK/PD models: general concepts and software.
J Pharmacokinet Pharmacodyn. 2002 Jun;29(3):271-307. doi: 10.1023/a:1020206907668.
5
Bayesian infinite mixture model based clustering of gene expression profiles.
Bioinformatics. 2002 Sep;18(9):1194-206. doi: 10.1093/bioinformatics/18.9.1194.
6
A mixture model-based approach to the clustering of microarray expression data.
Bioinformatics. 2002 Mar;18(3):413-22. doi: 10.1093/bioinformatics/18.3.413.
7
Model-based clustering and data transformations for gene expression data.
Bioinformatics. 2001 Oct;17(10):977-87. doi: 10.1093/bioinformatics/17.10.977.
8
Singular value decomposition for genome-wide expression data processing and modeling.
Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6. doi: 10.1073/pnas.97.18.10101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验