Suppr超能文献

受限压力驱动的双相流中射流在低雷诺数下于各种几何形状中的稳定性。

Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries.

作者信息

Guillot Pierre, Colin Annie, Ajdari Armand

机构信息

Rhodia Laboratoire du Futur, Unité mixte Rhodia-CNRS, Université Bordeaux I, UMR 5258, 178 Avenue du Docteur Schweitzer, 33608 Pessac, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016307. doi: 10.1103/PhysRevE.78.016307. Epub 2008 Jul 17.

Abstract

We adress the question of the stability of a confined coflowing jet at low Reynolds number in various geometries. Our study is motivated by recent experiments in microfluidic devices. When immiscible fluids flow in microchannels, either monodisperse droplets or parallel flows are obtained depending upon the flow rate of the aqueous phase and the oil phase. In these experiments, the confining and the shape of the geometry play a fundamental role. In a previous paper [Guillot, Phys. Rev. Lett 99, 104502 (2007)], we analyzed the stability of the jet in the framework of the lubrication approximation at low Reynolds number in a cylindrical geometry, and we related the transition between the droplets regime and the jet regime to the absolute-convective transition of the Rayleigh plateau instability. In this work, the effect of the channel geometry and the jet position within the microfluidic device are discussed. New flow patterns are pointed out. Bidimensional jets are encountered in square and rectangular geometry. Contrary to jets occuring in circular geometry, these two-dimensional jets are absolutely stable. Focusing on situations where the inner fluid is more viscous than the outer one, we evidence a range of parameters where droplets are produced through a blocking and pinching mechanism. In this particular case, the flow is unstable, the growing perturbations are convected upstream. This induces the clogging of the channel by the internal phase and its pinching by the external one. In a future presentation we will give a comparison between this model and experimental data.

摘要

我们研究了在各种几何形状中低雷诺数下受限共流射流的稳定性问题。我们的研究受到微流控设备中近期实验的推动。当互不相溶的流体在微通道中流动时,根据水相和油相的流速会得到单分散液滴或平行流。在这些实验中,几何形状的限制和外形起着根本性作用。在之前的一篇论文[吉约,《物理评论快报》99,104502(2007)]中,我们在低雷诺数的润滑近似框架下分析了圆柱形几何形状中射流的稳定性,并将液滴状态和射流状态之间的转变与瑞利平台不稳定性的绝对 - 对流转变联系起来。在这项工作中,讨论了微流控设备中通道几何形状和射流位置的影响。指出了新的流动模式。在方形和矩形几何形状中会遇到二维射流。与圆形几何形状中出现的射流不同,这些二维射流是绝对稳定的。关注内部流体比外部流体更具粘性的情况,我们证明了通过阻塞和挤压机制产生液滴的一系列参数范围。在这种特殊情况下,流动是不稳定的,增长的扰动向上游对流。这会导致内部相堵塞通道并被外部相挤压。在未来的报告中,我们将对该模型与实验数据进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验