Suppr超能文献

基于使用3D打印喷嘴的非嵌入式共流聚焦的微流控液滴生成

Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.

作者信息

Dewandre Adrien, Rivero-Rodriguez Javier, Vitry Youen, Sobac Benjamin, Scheid Benoit

机构信息

TIPs Lab, Université libre de Bruxelles, Brussels, 1050, Belgium.

出版信息

Sci Rep. 2020 Dec 10;10(1):21616. doi: 10.1038/s41598-020-77836-y.

Abstract

Most commercial microfluidic droplet generators rely on the planar flow-focusing configuration implemented in polymer or glass chips. The planar geometry, however, suffers from many limitations and drawbacks, such as the need of specific coatings or the use of dedicated surfactants, depending on the fluids in play. On the contrary, and thanks to their axisymmetric geometry, glass capillary-based droplet generators are a priori not fluid-dependent. Nevertheless, they have never reached the market because their assembly requires fastidious and not scalable fabrication techniques. Here we present a new device, called Raydrop, based on the alignment of two capillaries immersed in a pressurized chamber containing the continuous phase. The dispersed phase exits one of the capillaries through a 3D-printed nozzle placed in front of the extraction capillary for collecting the droplets. This non-embedded implementation of an axisymmetric flow-focusing is referred to non-embedded co-flow-focusing configuration. Experimental results demonstrate the universality of the device in terms of the variety of fluids that can be emulsified, as well as the range of droplet radii that can be obtained, without neither the need of surfactant nor coating. Additionally, numerical computations of the Navier-Stokes equations based on the quasi-steadiness assumption allow to provide an explanation to the underlying mechanism behind the drop formation and the mechanism of the dripping to jetting transition. Excellent predictions were also obtained for the droplet radius, as well as for the dripping-jetting transition, when varying the geometrical and fluid parameters, showing the ability of this configuration to enventually enhance the dripping regime. The monodispersity ensured by the dripping regime, the robustness of the fabrication technique, the optimization capabilities from the numerical modelling and the universality of the configuration confer to the Raydrop technology a very high potential in the race towards high-throughput droplet generation processes.

摘要

大多数商用微流控液滴发生器依赖于在聚合物或玻璃芯片中实现的平面流聚焦配置。然而,平面几何结构存在许多限制和缺点,例如根据所涉及的流体,需要特定的涂层或使用专用表面活性剂。相反,由于其轴对称几何结构,基于玻璃毛细管的液滴发生器原则上不依赖于流体。然而,它们从未进入市场,因为其组装需要繁琐且不可扩展的制造技术。在此,我们展示了一种名为Raydrop的新设备,它基于两个浸入含有连续相的加压腔室中的毛细管的对齐。分散相通过放置在提取毛细管前方用于收集液滴的3D打印喷嘴从其中一个毛细管中流出。这种轴对称流聚焦的非嵌入式实现方式被称为非嵌入式共流聚焦配置。实验结果证明了该设备在可乳化流体种类以及可获得的液滴半径范围方面的通用性,既不需要表面活性剂也不需要涂层。此外,基于准稳态假设的纳维 - 斯托克斯方程的数值计算能够对液滴形成背后的潜在机制以及滴流到射流转变的机制做出解释。当改变几何和流体参数时,对于液滴半径以及滴流 - 射流转变也获得了出色的预测结果,表明这种配置最终能够增强滴流状态的能力。由滴流状态确保的单分散性、制造技术的稳健性、数值建模的优化能力以及配置的通用性赋予了Raydrop技术在高通量液滴生成过程竞争中非常高的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9c7/7729985/bc2109e1f928/41598_2020_77836_Fig1_HTML.jpg

相似文献

1
Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.
Sci Rep. 2020 Dec 10;10(1):21616. doi: 10.1038/s41598-020-77836-y.
2
Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device.
Micromachines (Basel). 2020 Oct 27;11(11):962. doi: 10.3390/mi11110962.
3
Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System.
Micromachines (Basel). 2018 Mar 21;9(4):139. doi: 10.3390/mi9040139.
4
High inertial microfluidics for droplet generation in a flow-focusing geometry.
Biomed Microdevices. 2019 Jun 15;21(3):50. doi: 10.1007/s10544-019-0405-x.
5
Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.
Langmuir. 2015 Jan 27;31(3):1218-24. doi: 10.1021/la504299r. Epub 2015 Jan 9.
6
Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
J Colloid Interface Sci. 2017 Nov 1;505:315-324. doi: 10.1016/j.jcis.2017.05.115. Epub 2017 Jun 1.
7
Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
J Colloid Interface Sci. 2015 Jul 15;450:279-287. doi: 10.1016/j.jcis.2015.03.032. Epub 2015 Mar 21.
8
3D printed fittings and fluidic modules for customizable droplet generators.
RSC Adv. 2019 Jan 21;9(5):2822-2828. doi: 10.1039/c8ra08686a. eCollection 2019 Jan 18.
9
Geometry Effects of Axisymmetric Flow-Focusing Microchannels for Single Cell Encapsulation.
Materials (Basel). 2019 Sep 2;12(17):2811. doi: 10.3390/ma12172811.
10
Effect of Intersection Angle of Input Channels in Droplet Generators.
Molecules. 2022 Mar 9;27(6):1791. doi: 10.3390/molecules27061791.

引用本文的文献

1
3D nanoprinting of embryo microinjection needles with anti-clogging features.
Microsyst Nanoeng. 2025 Sep 11;11(1):171. doi: 10.1038/s41378-025-01005-2.
2
A passive flow microreactor for urine creatinine test.
Microsyst Nanoeng. 2025 Apr 2;11(1):56. doi: 10.1038/s41378-025-00880-z.
3
Digital Melting Curve Analysis for Multiplex Quantification of Nucleic Acids on Droplet Digital PCR.
Biosensors (Basel). 2025 Jan 10;15(1):36. doi: 10.3390/bios15010036.
4
Additive manufacturing of 3D flow-focusing millifluidics for the production of curable microdroplets.
RSC Adv. 2024 Dec 12;14(53):39276-39284. doi: 10.1039/d4ra07234k. eCollection 2024 Dec 10.
5
Periodic Flows in Microfluidics.
Small. 2024 Dec;20(50):e2404685. doi: 10.1002/smll.202404685. Epub 2024 Sep 9.
6
Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules.
Micromachines (Basel). 2024 Jul 29;15(8):971. doi: 10.3390/mi15080971.
7
The use of droplet-based microfluidic technologies for accelerated selection of and yeast mutants.
Biol Methods Protoc. 2024 Jul 10;9(1):bpae049. doi: 10.1093/biomethods/bpae049. eCollection 2024.
8
Single-Cell RNA Sequencing in Organ and Cell Transplantation.
Biosensors (Basel). 2024 Apr 11;14(4):189. doi: 10.3390/bios14040189.
9
Direct laser writing-enabled 3D printing strategies for microfluidic applications.
Lab Chip. 2024 Apr 30;24(9):2371-2396. doi: 10.1039/d3lc00743j.
10
Recent Progress in Droplet Structure Machining for Advanced Optics.
Micromachines (Basel). 2024 Feb 28;15(3):337. doi: 10.3390/mi15030337.

本文引用的文献

1
Advances in the Use of Microfluidics to Study Crystallization Fundamentals.
Annu Rev Chem Biomol Eng. 2019 Jun 7;10:59-83. doi: 10.1146/annurev-chembioeng-060718-030312. Epub 2019 Apr 24.
2
Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing.
J Colloid Interface Sci. 2019 Apr 15;542:23-32. doi: 10.1016/j.jcis.2019.01.119. Epub 2019 Jan 29.
3
Microfluidic Devices for Drug Delivery Systems and Drug Screening.
Genes (Basel). 2018 Feb 16;9(2):103. doi: 10.3390/genes9020103.
4
Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics.
Nat Protoc. 2017 Sep;12(9):1912-1932. doi: 10.1038/nprot.2017.092. Epub 2017 Aug 24.
5
Emerging Droplet Microfluidics.
Chem Rev. 2017 Jun 28;117(12):7964-8040. doi: 10.1021/acs.chemrev.6b00848. Epub 2017 May 24.
6
Temperature controlled tensiometry using droplet microfluidics.
Lab Chip. 2017 Feb 14;17(4):717-726. doi: 10.1039/c6lc01384h.
7
Monosized dripping mode of axisymmetric flow focusing.
Phys Rev E. 2016 Nov;94(5-1):053122. doi: 10.1103/PhysRevE.94.053122. Epub 2016 Nov 29.
8
A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.
Anal Chim Acta. 2016 Mar 31;914:7-16. doi: 10.1016/j.aca.2016.02.006. Epub 2016 Feb 13.
9
Tip-multi-breaking in Capillary Microfluidic Devices.
Sci Rep. 2015 Jun 16;5:11102. doi: 10.1038/srep11102.
10
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Cell. 2015 May 21;161(5):1187-1201. doi: 10.1016/j.cell.2015.04.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验