Jaleel Abdul, Short Kevin R, Asmann Yan W, Klaus Katherine A, Morse Dawn M, Ford G Charles, Nair K Sreekumaran
Division of Endocrinology, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1255-68. doi: 10.1152/ajpendo.90586.2008. Epub 2008 Sep 2.
Skeletal muscle mitochondrial dysfunction occurs in many conditions including aging and insulin resistance, but the molecular pathways of the mitochondrial dysfunction remain unclear. Presently, no methodologies are available to measure synthesis rates of individual mitochondrial proteins, which limits our ability to fully understand the translational regulation of gene transcripts. Here, we report a methodology to measure synthesis rates of multiple muscle mitochondrial proteins, which, along with large-scale measurements of mitochondrial gene transcripts and protein concentrations, will enable us to determine whether mitochondrial alteration is due to transcriptional or translational changes. The methodology involves in vivo labeling of muscle proteins with l-[ring-(13)C(6)]phenylalanine, protein purification by two-dimensional gel electrophoresis of muscle mitochondrial fraction, and protein identification and stable isotope abundance measurements by tandem mass spectrometry. Synthesis rates of 68 mitochondrial and 23 nonmitochondrial proteins from skeletal muscle mitochondrial fraction showed a 10-fold range, with the lowest rate for a structural protein such as myosin heavy chain (0.16 +/- 0.04%/h) and the highest for a mitochondrial protein such as dihydrolipoamide branched chain transacylase E2 (1.5 +/- 0.42%/h). This method offers an opportunity to better define the translational regulation of proteins in skeletal muscle or other tissues.
骨骼肌线粒体功能障碍发生在包括衰老和胰岛素抵抗在内的多种情况下,但线粒体功能障碍的分子途径仍不清楚。目前,尚无方法可用于测量单个线粒体蛋白的合成速率,这限制了我们全面了解基因转录本翻译调控的能力。在此,我们报告一种测量多种肌肉线粒体蛋白合成速率的方法,该方法与线粒体基因转录本和蛋白质浓度的大规模测量相结合,将使我们能够确定线粒体改变是由于转录变化还是翻译变化所致。该方法包括用l-[环-(13)C(6)]苯丙氨酸对肌肉蛋白进行体内标记、通过肌肉线粒体组分的二维凝胶电泳进行蛋白质纯化,以及通过串联质谱进行蛋白质鉴定和稳定同位素丰度测量。来自骨骼肌线粒体组分的68种线粒体蛋白和23种非线粒体蛋白的合成速率显示出10倍的范围,其中结构蛋白如肌球蛋白重链的合成速率最低(0.16±0.04%/小时),而线粒体蛋白如二氢硫辛酰胺支链转酰基酶E2的合成速率最高(1.5±0.42%/小时)。该方法为更好地定义骨骼肌或其他组织中蛋白质的翻译调控提供了机会。