Suppr超能文献

精氨酸甲基化代谢物与癌症相关肌肉消耗中肌肉蛋白合成减少有关。

Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting.

机构信息

Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

J Biol Chem. 2020 Dec 18;295(51):17441-17459. doi: 10.1074/jbc.RA120.014884.

Abstract

Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week-old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and N-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.

摘要

癌症恶病质的特征是外周瘦肌肉质量减少。先前的研究主要集中在增加蛋白质分解作为癌症相关肌肉消耗的驱动因素。然而,针对分解代谢途径的治疗干预措施在很大程度上未能保留恶病质中的肌肉质量,这表明可能涉及其他机制。为了寻找新的途径,我们使用非靶向代谢组学来寻找可能与肌肉萎缩相关的代谢物特征。我们向 7 周龄 C57/BL6 小鼠注射 LLC1 肿瘤细胞或载体。21 天后,与对照组相比,荷瘤小鼠的体重和肌肉质量下降,握力下降,混合肌肉蛋白和肌原纤维和肌浆部分的合成率降低。蛋白质合成减少伴随着线粒体增大和荷瘤小鼠的偶联效率降低。为了深入了解蛋白质合成受损的机制,我们对血浆和肌肉进行了非靶向代谢组学分析,发现与对照组相比,荷瘤小鼠的两种甲基精氨酸(不对称二甲基精氨酸(ADMA)和 N-单甲基-l-精氨酸)的浓度升高。与健康对照组相比,人类癌症患者的骨骼肌中 ADMA 水平也较高。用 ADMA 处理 C2C12 肌管会损害蛋白质合成并降低线粒体蛋白质质量。这些结果表明,ADMA 水平升高和线粒体变化可能导致癌症恶病质中肌肉蛋白质合成受损,并可能为减轻癌症恶病质提供新的治疗靶点。

相似文献

2
Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C101-15. doi: 10.1152/ajpcell.00344.2015. Epub 2016 Apr 27.
3
Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice.
Am J Physiol Regul Integr Comp Physiol. 2001 Jul;281(1):R133-9. doi: 10.1152/ajpregu.2001.281.1.R133.
4
Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia.
Dis Model Mech. 2012 Jul;5(4):533-45. doi: 10.1242/dmm.008839. Epub 2012 Mar 22.
5
Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism.
Oxid Med Cell Longev. 2017;2017:8018197. doi: 10.1155/2017/8018197. Epub 2017 Dec 11.
7
Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia.
EMBO Rep. 2022 Apr 5;23(4):e53746. doi: 10.15252/embr.202153746. Epub 2022 Feb 24.
9
JNK signaling contributes to skeletal muscle wasting and protein turnover in pancreatic cancer cachexia.
Cancer Lett. 2020 Oct 28;491:70-77. doi: 10.1016/j.canlet.2020.07.025. Epub 2020 Jul 28.
10
Coculture with Colon-26 cancer cells decreases the protein synthesis rate and shifts energy metabolism toward glycolysis dominance in C2C12 myotubes.
Am J Physiol Cell Physiol. 2024 May 1;326(5):C1520-C1542. doi: 10.1152/ajpcell.00179.2023. Epub 2024 Apr 1.

引用本文的文献

1
A role of arginase-1-expressing myeloid cells in cachexia.
Cancer Metab. 2025 Jun 5;13(1):27. doi: 10.1186/s40170-025-00396-0.
3
Metabolomics-driven discovery of therapeutic targets for cancer cachexia.
J Cachexia Sarcopenia Muscle. 2024 Jun;15(3):781-793. doi: 10.1002/jcsm.13465. Epub 2024 Apr 21.
4
5
The landscape of cancer cachexia in advanced non-small cell lung cancer: a narrative review.
Transl Lung Cancer Res. 2023 Jan 31;12(1):168-180. doi: 10.21037/tlcr-22-561. Epub 2023 Jan 16.
6
The Role of Skeletal Muscle Mitochondria in Colorectal Cancer Related Cachexia: Friends or Foes?
Int J Mol Sci. 2022 Nov 27;23(23):14833. doi: 10.3390/ijms232314833.
7
Methylarginine efflux in nutrient-deprived yeast mitigates disruption of nitric oxide synthesis.
Amino Acids. 2023 Feb;55(2):215-233. doi: 10.1007/s00726-022-03220-x. Epub 2022 Dec 1.
9
Metabolomics and its Applications in Cancer Cachexia.
Front Mol Biosci. 2022 Feb 7;9:789889. doi: 10.3389/fmolb.2022.789889. eCollection 2022.
10
Metabolomic signatures for the longitudinal reduction of muscle strength over 10 years.
Skelet Muscle. 2022 Feb 7;12(1):4. doi: 10.1186/s13395-022-00286-9.

本文引用的文献

1
Impaired cardiac performance, protein synthesis, and mitochondrial function in tumor-bearing mice.
PLoS One. 2019 Dec 18;14(12):e0226440. doi: 10.1371/journal.pone.0226440. eCollection 2019.
2
Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2019 Dec;68(1):e86. doi: 10.1002/cpbi.86.
3
The reactome pathway knowledgebase.
Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503. doi: 10.1093/nar/gkz1031.
4
Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle.
Cancers (Basel). 2019 Aug 28;11(9):1264. doi: 10.3390/cancers11091264.
5
Tissue-specific dysregulation of mitochondrial respiratory capacity and coupling control in colon-26 tumor-induced cachexia.
Am J Physiol Regul Integr Comp Physiol. 2019 Jul 1;317(1):R68-R82. doi: 10.1152/ajpregu.00028.2019. Epub 2019 Apr 24.
6
Mitochondria as a Target for Mitigating Sarcopenia.
Front Physiol. 2019 Jan 10;9:1883. doi: 10.3389/fphys.2018.01883. eCollection 2018.
7
Skeletal Muscle Fibrosis in Pancreatic Cancer Patients with Respect to Survival.
JNCI Cancer Spectr. 2018 Jul;2(3):pky043. doi: 10.1093/jncics/pky043. Epub 2018 Aug 6.
8
Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice.
J Cachexia Sarcopenia Muscle. 2018 Oct;9(5):987-1002. doi: 10.1002/jcsm.12354. Epub 2018 Oct 16.
9
Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice.
Physiol Genomics. 2018 Dec 1;50(12):1071-1082. doi: 10.1152/physiolgenomics.00061.2018. Epub 2018 Oct 5.
10
Mitochondrial dynamics in cancer-induced cachexia.
Biochim Biophys Acta Rev Cancer. 2018 Dec;1870(2):137-150. doi: 10.1016/j.bbcan.2018.07.008. Epub 2018 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验