Hautamäki Mikko P, Aho Allan J, Alander Pasi, Rekola Jami, Gunn Jarmo, Strandberg Niko, Vallittu Pekka K
Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Finland.
Acta Orthop. 2008 Aug;79(4):555-64. doi: 10.1080/17453670710015571.
Polymer technology has provided solutions for filling of bone defects in situations where there may be technical or biological complications with autografts, allografts, and metal prostheses. We present an experimental study on segmental bone defect reconstruction using a polymethylmethacrylate-(PMMA-) based bulk polymer implant prosthesis. We concentrated on osteoconductivity and surface characteristics.
A critical size segment defect of the rabbit tibia in 19 animals aged 18-24 weeks was reconstructed with a surface porous glass fiber-reinforced (SPF) prosthesis made of polymethylmethacrylate (PMMA). The biomechanical properties of SPF implant material were previously adjusted technically to mimic the properties of normal cortical bone. A plain PMMA implant with no porosity or fiber reinforcement was used as a control. Radiology, histomorphometry, and scanning electron microscopy (SEM) were used for analysis of bone growth into the prosthesis during incorporation.
The radiographic and histological incorporation model showed good host bone contact, and strong formation of new bone as double cortex. Histomorphometric evaluation showed that the bone contact index (BCI) at the posterior surface interface was higher with the SPF implant than for the control. The total appositional bone growth over the posterior surface (area %) was also stronger for the SPF implant than for controls. Both bone growth into the porous surface and the BCI results were related to the quality, coverage, and regularity of the microstructure of the porous surface.
Porous surface structure enhanced appositional bone growth onto the SPF implant. Under load-bearing conditions the implant appears to function like an osteoconductive prosthesis, which enables direct mobilization and rapid return to full weight bearing.
在自体骨移植、异体骨移植及金属假体可能出现技术或生物学并发症的情况下,聚合物技术为骨缺损的填充提供了解决方案。我们进行了一项实验研究,使用基于聚甲基丙烯酸甲酯(PMMA)的块状聚合物植入假体修复节段性骨缺损。我们重点关注骨传导性和表面特性。
对19只18 - 24周龄家兔的胫骨临界尺寸节段性缺损,采用聚甲基丙烯酸甲酯(PMMA)制成的表面多孔玻璃纤维增强(SPF)假体进行修复。SPF植入材料的生物力学性能先前已通过技术手段进行调整,以模拟正常皮质骨的性能。使用无孔隙或纤维增强的普通PMMA植入物作为对照。在植入过程中,采用放射学、组织形态计量学和扫描电子显微镜(SEM)分析骨向假体的生长情况。
影像学和组织学植入模型显示宿主骨与假体接触良好,且有新骨形成双皮质的强烈表现。组织形态计量学评估显示,SPF植入物后表面界面处的骨接触指数(BCI)高于对照组。SPF植入物后表面的总贴壁骨生长(面积百分比)也强于对照组。骨向多孔表面的生长以及BCI结果均与多孔表面微观结构的质量、覆盖率和规则性有关。
多孔表面结构增强了贴壁骨在SPF植入物上的生长。在负重条件下,该植入物似乎起到骨传导性假体的作用,能够直接活动并迅速恢复至完全负重状态。