Kokh Daria B, Wenzel Wolfgang
Fachbereich C-Mathematik and Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, Germany.
J Med Chem. 2008 Oct 9;51(19):5919-31. doi: 10.1021/jm800217k. Epub 2008 Sep 5.
While modern docking methods often predict accurate binding modes, affinity calculations remain challenging and enrichment rates of in silico screening methods unsatisfactory. Inadequate treatment of induced fit effects is one major shortcoming of existing in silico screening methods. Here we investigate enrichment rates of rigid-, soft- and flexible-receptor models for 12 diverse receptors using libraries containing up to 13000 molecules. For the rigid-receptor model, we observed high enrichment (EF1 > 20) only for four target proteins. A soft-receptor model showed improved docking rates at the expense of reduced enrichment rates. A flexible side-chain model with flexible dihedral angles for up to 12 amino acids (3-8 flexible side chains) increased both binding propensity and enrichment rates: EF1 values increased by approximately 35% on average with respect to rigid docking. We find on average 4 known ligands in the top 10 molecules in the rank-ordered databases for the receptors investigated.
虽然现代对接方法通常能预测出准确的结合模式,但亲和力计算仍然具有挑战性,且计算机模拟筛选方法的富集率也不尽人意。对诱导契合效应处理不当是现有计算机模拟筛选方法的一个主要缺点。在此,我们使用包含多达13000个分子的文库,研究了12种不同受体的刚性、柔性和可变形受体模型的富集率。对于刚性受体模型,我们仅观察到四种靶蛋白具有高富集率(EF1>20)。柔性受体模型显示对接率有所提高,但以富集率降低为代价。一种具有多达12个氨基酸(3-8个柔性侧链)的柔性二面角的柔性侧链模型提高了结合倾向和富集率:相对于刚性对接,EF1值平均提高了约35%。在所研究受体的排序数据库中,我们在排名前十的分子中平均发现4种已知配体。