Suppr超能文献

用于鉴定埃博拉病毒VP35-dsRNA抑制剂的计算机模拟和体外方法。

In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors.

作者信息

Glanzer Jason G, Byrne Brendan M, McCoy Aaron M, James Ben J, Frank Joshua D, Oakley Greg G

机构信息

Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States.

Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States.

出版信息

Bioorg Med Chem. 2016 Nov 1;24(21):5388-5392. doi: 10.1016/j.bmc.2016.08.065. Epub 2016 Sep 4.

Abstract

Ebola virus continues to be problematic as sporadic outbreaks in Africa continue to arise, and as terrorist organizations have considered the virus for bioterrorism use. Several proteins within the virus have been targeted for antiviral chemotherapy, including VP35, a dsRNA binding protein that promotes viral replication, protects dsRNA from degradation, and prevents detection of the viral genome by immune complexes. To augment the scope of our antiviral research, we have now employed molecular modeling techniques to enrich the population of compounds for further testing in vitro. In the initial docking of a static VP35 structure with an 80,000 compound library, 40 compounds were selected, of which four compounds inhibited VP35 with IC <200μM, with the best compounds having an IC of 20μM. By superimposing 26 VP35 structures, we determined four aspartic acid residues were highly flexible and the docking was repeated under flexible parameters. Of 14 compounds chosen for testing, five compounds inhibited VP35 with IC <200μM and one compound with an IC of 4μM. These studies demonstrate the value of docking in silico for enriching compounds for testing in vitro, and specifically using multiple structures as a guide for detecting flexibility and provide a foundation for further development of small molecule inhibitors directed towards VP35.

摘要

由于非洲持续出现散发性埃博拉病毒疫情,且恐怖组织也将该病毒用于生物恐怖主义,埃博拉病毒仍然是一个棘手的问题。病毒中的几种蛋白质已成为抗病毒化疗的靶点,其中包括VP35,一种双链RNA结合蛋白,它能促进病毒复制,保护双链RNA不被降解,并防止免疫复合物检测到病毒基因组。为了扩大我们抗病毒研究的范围,我们现在采用分子建模技术来丰富化合物库,以便在体外进行进一步测试。在将静态VP35结构与一个80000种化合物的文库进行初步对接时,挑选出了40种化合物,其中4种化合物对VP35的抑制IC<200μM,最佳化合物的IC为20μM。通过叠加26种VP35结构,我们确定了4个天冬氨酸残基具有高度灵活性,并在灵活参数下重复对接。在挑选出用于测试的14种化合物中,5种化合物对VP35的抑制IC<200μM,1种化合物的IC为4μM。这些研究证明了计算机对接在富集用于体外测试的化合物方面的价值,特别是使用多种结构作为检测灵活性的指导,并为进一步开发针对VP35的小分子抑制剂奠定了基础。

相似文献

1
In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors.
Bioorg Med Chem. 2016 Nov 1;24(21):5388-5392. doi: 10.1016/j.bmc.2016.08.065. Epub 2016 Sep 4.
2
Identification of Myricetin as an Ebola Virus VP35-Double-Stranded RNA Interaction Inhibitor through a Novel Fluorescence-Based Assay.
Biochemistry. 2018 Nov 6;57(44):6367-6378. doi: 10.1021/acs.biochem.8b00892. Epub 2018 Oct 22.
3
Identification of novel VP35 inhibitors: Virtual screening driven new scaffolds.
Biomed Pharmacother. 2016 Dec;84:199-207. doi: 10.1016/j.biopha.2016.09.034. Epub 2016 Sep 19.
4
In silico exploration of deep-sea fungal metabolites as inhibitor of Ebola and Marburg VP35 and VP40.
PLoS One. 2024 Jul 25;19(7):e0307579. doi: 10.1371/journal.pone.0307579. eCollection 2024.
5
Cynarin blocks Ebola virus replication by counteracting VP35 inhibition of interferon-beta production.
Antiviral Res. 2022 Feb;198:105251. doi: 10.1016/j.antiviral.2022.105251. Epub 2022 Jan 20.
6
In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity.
J Mol Biol. 2014 May 15;426(10):2045-58. doi: 10.1016/j.jmb.2014.01.010. Epub 2014 Feb 1.
7
Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds.
Biomedicines. 2021 Nov 30;9(12):1796. doi: 10.3390/biomedicines9121796.
8
Development of RNA aptamers targeting Ebola virus VP35.
Biochemistry. 2013 Nov 26;52(47):8406-19. doi: 10.1021/bi400704d. Epub 2013 Nov 14.
10
Structure of the Ebola VP35 interferon inhibitory domain.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):411-6. doi: 10.1073/pnas.0807854106. Epub 2009 Jan 2.

引用本文的文献

3
Opening and closing of a cryptic pocket in VP35 toggles it between two different RNA-binding modes.
bioRxiv. 2024 Oct 17:2024.08.22.609218. doi: 10.1101/2024.08.22.609218.
5
A cryptic pocket in Ebola VP35 allosterically controls RNA binding.
Nat Commun. 2022 Apr 27;13(1):2269. doi: 10.1038/s41467-022-29927-9.
6
Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds.
Biomedicines. 2021 Nov 30;9(12):1796. doi: 10.3390/biomedicines9121796.
7
Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules.
Annu Rep Med Chem. 2018;51:135-173. doi: 10.1016/bs.armc.2018.08.004. Epub 2018 Sep 22.

本文引用的文献

1
BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease.
J Infect Public Health. 2016 May-Jun;9(3):220-6. doi: 10.1016/j.jiph.2016.04.002. Epub 2016 Apr 16.
2
Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial.
PLoS Med. 2016 Apr 19;13(4):e1001997. doi: 10.1371/journal.pmed.1001997. eCollection 2016 Apr.
3
Genetic diversity in Ebola virus: Phylogenetic and in silico structural studies of Ebola viral proteins.
Asian Pac J Trop Med. 2016 Apr;9(4):337-343. doi: 10.1016/j.apjtm.2016.03.016. Epub 2016 Mar 9.
4
Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016.
Emerg Infect Dis. 2016 Jun;22(6):956-63. doi: 10.3201/eid2206.160021. Epub 2016 Jun 15.
6
Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody.
Science. 2016 Mar 18;351(6279):1339-42. doi: 10.1126/science.aad5224. Epub 2016 Feb 25.
8
Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea.
N Engl J Med. 2016 Jan 7;374(1):33-42. doi: 10.1056/NEJMoa1511812.
9
In silico prediction of ebolavirus RNA polymerase inhibition by specific combinations of approved nucleotide analogues.
J Clin Virol. 2015 Dec;73:89-94. doi: 10.1016/j.jcv.2015.10.020. Epub 2015 Nov 5.
10
Charting a Path to Success in Virtual Screening.
Molecules. 2015 Oct 15;20(10):18732-58. doi: 10.3390/molecules201018732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验