Suppr超能文献

神经退行性模型中眼部规则性丧失的机器学习表征

Machine Learning Representation of Loss of Eye Regularity in a Neurodegenerative Model.

作者信息

Diez-Hermano Sergio, Ganfornina Maria D, Vegas-Lozano Esteban, Sanchez Diego

机构信息

Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain.

Departamento de Biodiversidad, Ecologia y Evolucion, Unidad de Biomatematicas, Universidad Complutense, Madrid, Spain.

出版信息

Front Neurosci. 2020 Jun 4;14:516. doi: 10.3389/fnins.2020.00516. eCollection 2020.

Abstract

The fruit fly compound eye is a premier experimental system for modeling human neurodegenerative diseases. The disruption of the retinal geometry has been historically assessed using time-consuming and poorly reliable techniques such as histology or pseudopupil manual counting. Recent semiautomated quantification approaches rely either on manual region-of-interest delimitation or engineered features to estimate the extent of degeneration. This work presents a fully automated classification pipeline of bright-field images based on orientated gradient descriptors and machine learning techniques. An initial region-of-interest extraction is performed, applying morphological kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms are trained on these regions (support vector machine, decision trees, random forest, and convolutional neural network), and their performance is evaluated on independent, unseen datasets. The combinations of oriented gradient + gaussian kernel Support Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best results overall. The proposed method provides a robust quantification framework that can be generalized to address the loss of regularity in biological patterns similar to the eye surface and speeds up the processing of large sample batches.

摘要

果蝇复眼是用于模拟人类神经退行性疾病的重要实验系统。视网膜几何结构的破坏历来是使用诸如组织学或假瞳孔手动计数等耗时且可靠性差的技术来评估的。最近的半自动量化方法要么依赖于手动划定感兴趣区域,要么依赖于工程特征来估计退化程度。这项工作提出了一种基于定向梯度描述符和机器学习技术的明场图像全自动分类流程。通过应用形态学内核和到质心的欧几里得距离阈值化来执行初始感兴趣区域提取。图像分类算法在这些区域上进行训练(支持向量机、决策树、随机森林和卷积神经网络),并在独立的、未见过的数据集上评估其性能。定向梯度+高斯核支持向量机(准确率0.97,曲线下面积[AUC]0.98)和微调的预训练卷积神经网络(准确率0.98,AUC0.99)的组合总体上产生了最佳结果。所提出的方法提供了一个强大的量化框架,可推广用于解决类似于眼表的生物模式中的规则性丧失问题,并加快大样本批次的处理速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e52/7287026/ca345f984216/fnins-14-00516-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验