van de Werken Harmen J G, Verhaart Marcel R A, VanFossen Amy L, Willquist Karin, Lewis Derrick L, Nichols Jason D, Goorissen Heleen P, Mongodin Emmanuel F, Nelson Karen E, van Niel Ed W J, Stams Alfons J M, Ward Donald E, de Vos Willem M, van der Oost John, Kelly Robert M, Kengen Servé W M
Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
Appl Environ Microbiol. 2008 Nov;74(21):6720-9. doi: 10.1128/AEM.00968-08. Epub 2008 Sep 5.
Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO(2), and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.
嗜糖栖热解纤维素菌是一种极端嗜热的革兰氏阳性厌氧菌,它能将含有纤维素、半纤维素和果胶的生物质发酵成乙酸盐、二氧化碳和氢气。其广泛的底物范围、高产氢能力以及同时利用葡萄糖和木糖的能力,使这种细菌成为微生物生物能源生产的有吸引力的候选者。在此,描述了嗜糖栖热解纤维素菌的完整基因组序列,其由一个2,970,275碱基对的环状染色体组成,编码2,679个预测蛋白。对该基因组的分析表明,嗜糖栖热解纤维素菌对纤维素、半纤维素、果胶和淀粉具有广泛的多糖水解能力,并伴有大量用于摄取单体和寡聚糖的ABC转运蛋白。糖酵解途径和非氧化戊糖磷酸途径的成分均存在;然而,没有证据表明存在Entner-Doudoroff途径。鉴定出了一系列糖类(包括鼠李糖、岩藻糖、阿拉伯糖、葡萄糖醛酸、果糖和半乳糖)的分解代谢途径。这些途径导致生成NADH和还原型铁氧化还原蛋白。NADH和还原型铁氧化还原蛋白随后被两种不同的氢化酶用于产生氢气。全基因组转录组分析表明,在以葡萄糖和木糖生长期间,糖酵解途径和一种ABC型糖转运蛋白有显著上调,这表明嗜糖栖热解纤维素菌能同时发酵这些糖类,不受基于葡萄糖的分解代谢物阻遏的阻碍。同时处理和利用与生物质原料相关的一系列碳水化合物的能力是这种利用木质纤维素、生产生物燃料的细菌的一个非常理想的特征。