Suppr超能文献

嗜热细菌嗜糖栖热解纤维素菌的氢组学

Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.

作者信息

van de Werken Harmen J G, Verhaart Marcel R A, VanFossen Amy L, Willquist Karin, Lewis Derrick L, Nichols Jason D, Goorissen Heleen P, Mongodin Emmanuel F, Nelson Karen E, van Niel Ed W J, Stams Alfons J M, Ward Donald E, de Vos Willem M, van der Oost John, Kelly Robert M, Kengen Servé W M

机构信息

Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.

出版信息

Appl Environ Microbiol. 2008 Nov;74(21):6720-9. doi: 10.1128/AEM.00968-08. Epub 2008 Sep 5.

Abstract

Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO(2), and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.

摘要

嗜糖栖热解纤维素菌是一种极端嗜热的革兰氏阳性厌氧菌,它能将含有纤维素、半纤维素和果胶的生物质发酵成乙酸盐、二氧化碳和氢气。其广泛的底物范围、高产氢能力以及同时利用葡萄糖和木糖的能力,使这种细菌成为微生物生物能源生产的有吸引力的候选者。在此,描述了嗜糖栖热解纤维素菌的完整基因组序列,其由一个2,970,275碱基对的环状染色体组成,编码2,679个预测蛋白。对该基因组的分析表明,嗜糖栖热解纤维素菌对纤维素、半纤维素、果胶和淀粉具有广泛的多糖水解能力,并伴有大量用于摄取单体和寡聚糖的ABC转运蛋白。糖酵解途径和非氧化戊糖磷酸途径的成分均存在;然而,没有证据表明存在Entner-Doudoroff途径。鉴定出了一系列糖类(包括鼠李糖、岩藻糖、阿拉伯糖、葡萄糖醛酸、果糖和半乳糖)的分解代谢途径。这些途径导致生成NADH和还原型铁氧化还原蛋白。NADH和还原型铁氧化还原蛋白随后被两种不同的氢化酶用于产生氢气。全基因组转录组分析表明,在以葡萄糖和木糖生长期间,糖酵解途径和一种ABC型糖转运蛋白有显著上调,这表明嗜糖栖热解纤维素菌能同时发酵这些糖类,不受基于葡萄糖的分解代谢物阻遏的阻碍。同时处理和利用与生物质原料相关的一系列碳水化合物的能力是这种利用木质纤维素、生产生物燃料的细菌的一个非常理想的特征。

相似文献

1
Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
Appl Environ Microbiol. 2008 Nov;74(21):6720-9. doi: 10.1128/AEM.00968-08. Epub 2008 Sep 5.
6
Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T.
J Bacteriol. 2010 Nov;192(22):6099-100. doi: 10.1128/JB.00950-10. Epub 2010 Sep 17.
10
A non-linear model of hydrogen production by for diauxic-like consumption of lignocellulosic sugar mixtures.
Biotechnol Biofuels. 2018 Jun 22;11:175. doi: 10.1186/s13068-018-1171-3. eCollection 2018.

引用本文的文献

1
Comparative analysis of thermal adaptations of extremophilic prolyl oligopeptidases.
Biophys J. 2024 Sep 17;123(18):3143-3162. doi: 10.1016/j.bpj.2024.07.013. Epub 2024 Jul 15.
2
Extremophiles in a changing world.
Extremophiles. 2024 Apr 29;28(2):26. doi: 10.1007/s00792-024-01341-7.
3
Whither the genus and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype.
Front Microbiol. 2023 Aug 3;14:1212538. doi: 10.3389/fmicb.2023.1212538. eCollection 2023.
4
Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases.
Biomolecules. 2023 Feb 9;13(2):328. doi: 10.3390/biom13020328.
5
Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections.
Front Bioeng Biotechnol. 2021 Aug 12;9:710035. doi: 10.3389/fbioe.2021.710035. eCollection 2021.
8
Beyond mitochondria: Alternative energy-producing pathways from all strata of life.
Metabolism. 2021 May;118:154733. doi: 10.1016/j.metabol.2021.154733. Epub 2021 Feb 23.
9
Innovations in CAZyme gene diversity and its modification for biorefinery applications.
Biotechnol Rep (Amst). 2020 Sep 1;28:e00525. doi: 10.1016/j.btre.2020.e00525. eCollection 2020 Dec.
10
Insights into Thermophilic Plant Biomass Hydrolysis from Systems Biology.
Microorganisms. 2020 Mar 10;8(3):385. doi: 10.3390/microorganisms8030385.

本文引用的文献

2
High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.
PLoS One. 2007 May 23;2(5):e456. doi: 10.1371/journal.pone.0000456.
3
CRISPR provides acquired resistance against viruses in prokaryotes.
Science. 2007 Mar 23;315(5819):1709-12. doi: 10.1126/science.1138140.
4
Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus.
Appl Microbiol Biotechnol. 2007 Apr;74(6):1358-67. doi: 10.1007/s00253-006-0783-x. Epub 2007 Jan 11.
5
New developments in the InterPro database.
Nucleic Acids Res. 2007 Jan;35(Database issue):D224-8. doi: 10.1093/nar/gkl841.
6
Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria.
J Mol Microbiol Biotechnol. 2005;10(2-4):105-19. doi: 10.1159/000091558.
7
The integrated microbial genomes (IMG) system.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D344-8. doi: 10.1093/nar/gkj024.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验